1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkScalarImageToGreyLevelCooccurrenceMatrixGenerator.h,v $
Language: C++
Date: $Date: 2009-05-20 16:21:47 $
Version: $Revision: 1.10 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkScalarImageToGreyLevelCooccurrenceMatrixGenerator_h
#define __itkScalarImageToGreyLevelCooccurrenceMatrixGenerator_h
#include "itkImage.h"
#include "itkHistogram.h"
#include "itkDenseFrequencyContainer.h"
#include "itkVectorContainer.h"
#include "itkObject.h"
#include "itkNumericTraits.h"
#include "itkMacro.h"
namespace itk {
namespace Statistics {
/** \class ScalarImageToGreyLevelCooccurrenceMatrixGenerator
* \brief This class computes a grey-level co-occurence matrix (histogram) from
* a given image. GLCM's are used for image texture description.
*
* This generator creates a grey-level co-occurence matrix from a N-D scalar
* image. This is the first step in texture description a la Haralick. (See
* Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for
* Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
* SMC-3(6):610-620. See also Haralick, R.M. 1979. Statistical and Structural
* Approaches to Texture. Proceedings of the IEEE, 67:786-804.)
*
* The basic idea is as follows:
* Given an image and an offset (e.g. (1, -1) for a 2-d image), grey-level
* co-occurences are pairs of intensity values for a specific pixel and the
* pixel at that offset from the specified pixel. These co-occurences can provide
* information about the visual texture of an image region -- for example, an
* eight-bit image of alternating pixel-wide white and black vertical lines
* would have a large number of (0, 255) and (255, 0) co-occurences for offset
* (1, 0).
*
* The offset (or offsets) along which the co-occurences are calculated can be
* set by the user. Traditionally, only one offset is used per histogram, and
* offset components in the range [-1, 1] are used. For rotation-invariant features,
* averages of features computed over several histograms with different offsets
* are generally used, instead of computing features from one histogram created
* with several offsets. Additionally, instead of using offsets of two or more
* pixels in any direction, multy-resulution techniques (e.g. image pyramids)
* are generally used to deal with texture at different spatial resolutions.
*
* This class calculates a 2-d histogram of all the co-occurence pairs in the
* given image's requested region, for a given set of offsets. That is, if a given
* offset falls outside of the requested region at a particular point, that
* co-occurrence pair will not be added to the matrix.
*
* The number of histogram bins on each axis can be set (defaults to 256). Also,
* by default the histogram min and max corresponds to the largest and smallest
* possible pixel value of that pixel type. To customize the histogram bounds
* for a given image, the max and min pixel values that will be placed in the
* histogram can be set manually. NB: The min and max are INCLUSIVE.
*
* Further, the type of histogram frequency container used is an optional template
* parameter. By default, a dense container is used, but for images with little
* texture or in cases where the user wants more histogram bins, a sparse container
* can be used for the histogram instead.
*
* WARNING: This probably won't work for pixels of double or long-double type
* unless you set the histogram min and max manually. This is because the largest
* histogram bin by default has max value of the largest possible pixel value
* plus 1. For double and long-double types, whose "RealType" as defined by the
* NumericTraits class is the same, and thus cannot hold any larger values,
* this would cause a float overflow.
*
* \sa MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator
* \sa GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator
* \sa ScalarImageTextureCalculator
*
* Authors: Zachary Pincus and Glenn Pierce
*/
template< class TImageType,
class THistogramFrequencyContainer = DenseFrequencyContainer >
class ScalarImageToGreyLevelCooccurrenceMatrixGenerator : public Object
{
public:
/** Standard typedefs */
typedef ScalarImageToGreyLevelCooccurrenceMatrixGenerator Self;
typedef Object Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(ScalarImageToGreyLevelCooccurrenceMatrixGenerator, Object);
/** standard New() method support */
itkNewMacro(Self);
typedef TImageType ImageType;
typedef typename ImageType::Pointer ImagePointer;
typedef typename ImageType::ConstPointer ImageConstPointer;
typedef typename ImageType::PixelType PixelType;
typedef typename ImageType::RegionType RegionType;
typedef typename ImageType::SizeType RadiusType;
typedef typename ImageType::OffsetType OffsetType;
typedef VectorContainer<unsigned char, OffsetType> OffsetVector;
typedef typename OffsetVector::Pointer OffsetVectorPointer;
typedef typename OffsetVector::ConstPointer OffsetVectorConstPointer;
typedef typename NumericTraits<PixelType>::RealType MeasurementType;
typedef Histogram< MeasurementType, 2, THistogramFrequencyContainer >
HistogramType;
typedef typename HistogramType::Pointer HistogramPointer;
typedef typename HistogramType::ConstPointer HistogramConstPointer;
typedef typename HistogramType::MeasurementVectorType MeasurementVectorType;
itkStaticConstMacro(DefaultBinsPerAxis, unsigned int, 256);
/** Triggers the Computation of the histogram */
void Compute( void );
/** Connects the input image for which the histogram is going to be computed */
itkSetConstObjectMacro( Input, ImageType );
itkGetConstObjectMacro( Input, ImageType );
/** Set the offset or offsets over which the co-occurrence pairs
* will be computed. Calling either of these methods clears the
* previous offsets. */
itkSetConstObjectMacro( Offsets, OffsetVector );
itkGetConstObjectMacro( Offsets, OffsetVector );
void SetOffset( const OffsetType offset )
{
OffsetVectorPointer offsetVector = OffsetVector::New();
offsetVector->push_back(offset);
this->SetOffsets(offsetVector);
}
/** Return the histogram.
\warning This output is only valid after the Compute() method has been invoked
\sa Compute */
itkGetObjectMacro( Output, HistogramType );
/** Set number of histogram bins along each axis */
itkSetMacro( NumberOfBinsPerAxis, unsigned int );
itkGetMacro( NumberOfBinsPerAxis, unsigned int );
/** Set the min and max (inclusive) pixel value that will be placed in the histogram */
void SetPixelValueMinMax( PixelType min, PixelType max );
itkGetMacro(Min, PixelType);
itkGetMacro(Max, PixelType);
/** Set the calculator to normalize the histogram (divide all bins by the
total frequency). Normalization is off by default.*/
itkSetMacro(Normalize, bool);
itkGetMacro(Normalize, bool);
itkBooleanMacro(Normalize);
protected:
ScalarImageToGreyLevelCooccurrenceMatrixGenerator();
virtual ~ScalarImageToGreyLevelCooccurrenceMatrixGenerator() {};
void PrintSelf(std::ostream& os, Indent indent) const;
virtual void FillHistogram( RadiusType radius, RegionType region );
private:
ScalarImageToGreyLevelCooccurrenceMatrixGenerator(const Self&); //purposely not implemented
void operator=(const Self&); //purposely not implemented
void NormalizeHistogram( void );
ImageConstPointer m_Input;
HistogramPointer m_Output;
OffsetVectorConstPointer m_Offsets;
PixelType m_Min;
PixelType m_Max;
unsigned int m_NumberOfBinsPerAxis;
MeasurementVectorType m_LowerBound;
MeasurementVectorType m_UpperBound;
bool m_Normalize;
};
} // end of namespace Statistics
} // end of namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageToGreyLevelCooccurrenceMatrixGenerator.txx"
#endif
#endif
|