File: itkScalarImageToGreyLevelCooccurrenceMatrixGenerator.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (199 lines) | stat: -rwxr-xr-x 9,039 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkScalarImageToGreyLevelCooccurrenceMatrixGenerator.h,v $
  Language:  C++
  Date:      $Date: 2009-05-20 16:21:47 $
  Version:   $Revision: 1.10 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkScalarImageToGreyLevelCooccurrenceMatrixGenerator_h
#define __itkScalarImageToGreyLevelCooccurrenceMatrixGenerator_h

#include "itkImage.h"
#include "itkHistogram.h"
#include "itkDenseFrequencyContainer.h"
#include "itkVectorContainer.h"
#include "itkObject.h"
#include "itkNumericTraits.h"
#include "itkMacro.h"

namespace itk {
namespace Statistics {

/** \class ScalarImageToGreyLevelCooccurrenceMatrixGenerator 
 *  \brief This class computes a grey-level co-occurence matrix (histogram) from
 * a given image. GLCM's are used for image texture description.
 *
 * This generator creates a grey-level co-occurence matrix from a N-D scalar
 * image. This is the first step in texture description a la Haralick. (See
 * Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for
 * Image Classification. IEEE Transactions on Systems, Man and Cybernetics. 
 * SMC-3(6):610-620. See also Haralick, R.M. 1979. Statistical and Structural
 * Approaches to Texture. Proceedings of the IEEE, 67:786-804.)
 *
 * The basic idea is as follows:
 * Given an image and an offset (e.g. (1, -1) for a 2-d image), grey-level
 * co-occurences are pairs of intensity values for a specific pixel and the
 * pixel at that offset from the specified pixel. These co-occurences can provide
 * information about the visual texture of an image region -- for example, an
 * eight-bit image of alternating pixel-wide white and black vertical lines
 * would have a large number of (0, 255) and (255, 0) co-occurences for offset
 * (1, 0).
 *
 * The offset (or offsets) along which the co-occurences are calculated can be
 * set by the user. Traditionally, only one offset is used per histogram, and
 * offset components in the range [-1, 1] are used. For rotation-invariant features,
 * averages of features computed over several histograms with different offsets
 * are generally used, instead of computing features from one histogram created
 * with several offsets. Additionally, instead of using offsets of two or more
 * pixels in any direction, multy-resulution techniques (e.g. image pyramids)
 * are generally used to deal with texture at different spatial resolutions.
 *
 * This class calculates a 2-d histogram of all the co-occurence pairs in the
 * given image's requested region, for a given set of offsets. That is, if a given
 * offset falls outside of the requested region at a particular point, that
 * co-occurrence pair will not be added to the matrix.
 * 
 * The number of histogram bins on each axis can be set (defaults to 256). Also,
 * by default the histogram min and max corresponds to the largest and smallest
 * possible pixel value of that pixel type. To customize the histogram bounds
 * for a given image, the max and min pixel values that will be placed in the
 * histogram can be set manually. NB: The min and max are INCLUSIVE.
 *
 * Further, the type of histogram frequency container used is an optional template 
 * parameter. By default, a dense container is used, but for images with little
 * texture or in cases where the user wants more histogram bins, a sparse container
 * can be used for the histogram instead. 
 *
 * WARNING: This probably won't work for pixels of double or long-double type
 * unless you set the histogram min and max manually. This is because the largest
 * histogram bin by default has max value of the largest possible pixel value 
 * plus 1. For double and long-double types, whose "RealType" as defined by the
 * NumericTraits class is the same, and thus cannot hold any larger values,
 * this would cause a float overflow.
 * 
 * \sa MaskedScalarImageToGreyLevelCooccurrenceMatrixGenerator
 * \sa GreyLevelCooccurrenceMatrixTextureCoefficientsCalculator
 * \sa ScalarImageTextureCalculator
 *
 * Authors: Zachary Pincus and Glenn Pierce
 */
    
template< class TImageType,
          class THistogramFrequencyContainer = DenseFrequencyContainer >
class ScalarImageToGreyLevelCooccurrenceMatrixGenerator : public Object
{
public:
  /** Standard typedefs */
  typedef ScalarImageToGreyLevelCooccurrenceMatrixGenerator Self;
  typedef Object                                            Superclass;
  typedef SmartPointer<Self>                                Pointer;
  typedef SmartPointer<const Self>                          ConstPointer;
    
  /** Run-time type information (and related methods). */
  itkTypeMacro(ScalarImageToGreyLevelCooccurrenceMatrixGenerator, Object);
    
  /** standard New() method support */
  itkNewMacro(Self);
    
  typedef TImageType                                      ImageType;
  typedef typename ImageType::Pointer                     ImagePointer;
  typedef typename ImageType::ConstPointer                ImageConstPointer;
  typedef typename ImageType::PixelType                   PixelType;
  typedef typename ImageType::RegionType                  RegionType;
  typedef typename ImageType::SizeType                    RadiusType;
  typedef typename ImageType::OffsetType                  OffsetType;
  typedef VectorContainer<unsigned char, OffsetType>      OffsetVector;
  typedef typename OffsetVector::Pointer                  OffsetVectorPointer;
  typedef typename OffsetVector::ConstPointer             OffsetVectorConstPointer;
    
  typedef typename NumericTraits<PixelType>::RealType     MeasurementType;
    
  typedef Histogram< MeasurementType, 2, THistogramFrequencyContainer >
                                                          HistogramType;
  typedef typename HistogramType::Pointer                 HistogramPointer;
  typedef typename HistogramType::ConstPointer            HistogramConstPointer;
  typedef typename HistogramType::MeasurementVectorType   MeasurementVectorType;
    
    
  itkStaticConstMacro(DefaultBinsPerAxis, unsigned int, 256);
    
  /** Triggers the Computation of the histogram */
  void Compute( void );
    
  /** Connects the input image for which the histogram is going to be computed */
  itkSetConstObjectMacro( Input, ImageType );
  itkGetConstObjectMacro( Input, ImageType );

  /** Set the offset or offsets over which the co-occurrence pairs
   * will be computed. Calling either of these methods clears the
   * previous offsets. */
  itkSetConstObjectMacro( Offsets, OffsetVector );
  itkGetConstObjectMacro( Offsets, OffsetVector );
  void SetOffset( const OffsetType offset )
    {
    OffsetVectorPointer offsetVector = OffsetVector::New();
    offsetVector->push_back(offset);
    this->SetOffsets(offsetVector);
    }
        
  /** Return the histogram.
      \warning This output is only valid after the Compute() method has been invoked 
      \sa Compute */
  itkGetObjectMacro( Output, HistogramType );
    
  /** Set number of histogram bins along each axis */
  itkSetMacro( NumberOfBinsPerAxis, unsigned int );
  itkGetMacro( NumberOfBinsPerAxis, unsigned int );

  /** Set the min and max (inclusive) pixel value that will be placed in the histogram */
  void SetPixelValueMinMax( PixelType min, PixelType max );
  itkGetMacro(Min, PixelType);
  itkGetMacro(Max, PixelType);
    
  /** Set the calculator to normalize the histogram (divide all bins by the 
      total frequency). Normalization is off by default.*/
  itkSetMacro(Normalize, bool);
  itkGetMacro(Normalize, bool);
  itkBooleanMacro(Normalize);
    
protected:
  ScalarImageToGreyLevelCooccurrenceMatrixGenerator();
  virtual ~ScalarImageToGreyLevelCooccurrenceMatrixGenerator() {};
  void PrintSelf(std::ostream& os, Indent indent) const;
  virtual void FillHistogram( RadiusType radius, RegionType region );
  
private:
  ScalarImageToGreyLevelCooccurrenceMatrixGenerator(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented
  void NormalizeHistogram( void );
  
  ImageConstPointer        m_Input;
  HistogramPointer         m_Output;
  OffsetVectorConstPointer m_Offsets;
  PixelType                m_Min;
  PixelType                m_Max;

  unsigned int            m_NumberOfBinsPerAxis;
  MeasurementVectorType   m_LowerBound;
  MeasurementVectorType   m_UpperBound;
  bool                    m_Normalize;

};

} // end of namespace Statistics 
} // end of namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkScalarImageToGreyLevelCooccurrenceMatrixGenerator.txx"
#endif

#endif