File: itkWeightedCentroidKdTreeGenerator.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (125 lines) | stat: -rw-r--r-- 4,977 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkWeightedCentroidKdTreeGenerator.h,v $
  Language:  C++
  Date:      $Date: 2009-03-04 19:29:54 $
  Version:   $Revision: 1.6 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkWeightedCentroidKdTreeGenerator_h
#define __itkWeightedCentroidKdTreeGenerator_h

#include <vector>

#include "itkSample.h"
#include "itkSubsample.h"
#include "itkKdTree.h"
#include "itkKdTreeGenerator.h"
#include "itkStatisticsAlgorithm.h"

namespace itk { 
namespace Statistics {

/** \class WeightedCentroidKdTreeGenerator 
 *  \brief This class generates a KdTree object with centroid information.
 * 
 * The KdTree object stores measurment vectors in a k-d tree structure
 * that is a binary tree. The partition value is the median value of one
 * of the k dimension (partition dimension). The partition dimension is
 * determined by the spread of measurement values in each dimension. The
 * partition dimension is the dimension has the widest spread. Our
 * implementation of k-d tree doesn't have any construction or insertion
 * logic. Users should use this class or the KdTreeGenerator class.
 *
 * This class is derived from the KdTreeGenerator class. The only
 * difference between this class and the KdTreeGenerator class is that
 * the nonterminal node type of this class is
 * KdTreeWeightedCentroidNonterminalNode and that of the
 * KdTreeGenerator is KdTreeNonterminalNode. Therefore, the public
 * interface is identical to each other. The nonterminal node generation
 * routines differ.
 *
 * To run this generator, users should provides the bucket size
 * (SetBucketSize method) and the input sample (SetSample method). The
 * Update method will run this generator. To get the resulting KdTree
 * object, call the GetOutput method.
 * 
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * 'MeasurementVectorSize'  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained from the sample set
 * as input. You may query this length using the function GetMeasurementVectorSize().
 * 
 * \sa KdTree, KdTreeNode, KdTreeWeightedCentroidNonterminalNode, 
 * KdTreeTerminalNode, KdTreeGenerator
 */

template < class TSample >
class ITK_EXPORT WeightedCentroidKdTreeGenerator : 
    public KdTreeGenerator< TSample >
{
public:
  /** Standard class typedefs */
  typedef WeightedCentroidKdTreeGenerator Self;
  typedef KdTreeGenerator< TSample >      Superclass;
  typedef SmartPointer<Self>              Pointer;
  typedef SmartPointer<const Self>        ConstPointer;

  /** Run-time type information (and related methods) */
  itkTypeMacro(WeightedCentroidKdTreeGenerator, KdTreeGenerator);

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** typedef alias for the source data container */ 
  typedef typename Superclass::MeasurementVectorType MeasurementVectorType;
  typedef typename Superclass::MeasurementType       MeasurementType;
  typedef typename Superclass::SubsampleType         SubsampleType;
  typedef typename Superclass::SubsamplePointer      SubsamplePointer;
  typedef typename Superclass::KdTreeType            KdTreeType;
  typedef typename Superclass::KdTreeNodeType        KdTreeNodeType;


protected:
  /** Constructor */
  WeightedCentroidKdTreeGenerator();

  /** Destructor */
  virtual ~WeightedCentroidKdTreeGenerator() {}

  void PrintSelf(std::ostream& os, Indent indent) const;

  /** Nonterminal node generation routine */
  virtual KdTreeNodeType* GenerateNonterminalNode(unsigned int beginIndex,
                                                  unsigned int endIndex,
                                                  MeasurementVectorType 
                                                  &lowerBound,
                                                  MeasurementVectorType 
                                                  &upperBound,
                                                  unsigned int level);

private:
  WeightedCentroidKdTreeGenerator(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  MeasurementVectorType m_TempLowerBound;
  MeasurementVectorType m_TempUpperBound;
  MeasurementVectorType m_TempMean;
}; // end of class

} // end of namespace Statistics 
} // end of namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkWeightedCentroidKdTreeGenerator.txx"
#endif

#endif