File: itkWeightedCentroidKdTreeGenerator.txx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (148 lines) | stat: -rw-r--r-- 5,196 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkWeightedCentroidKdTreeGenerator.txx,v $
  Language:  C++
  Date:      $Date: 2009-03-04 19:29:54 $
  Version:   $Revision: 1.11 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkWeightedCentroidKdTreeGenerator_txx
#define __itkWeightedCentroidKdTreeGenerator_txx

namespace itk {
namespace Statistics {

template< class TSample >
WeightedCentroidKdTreeGenerator< TSample >
::WeightedCentroidKdTreeGenerator()
{
}

template< class TSample >
void
WeightedCentroidKdTreeGenerator< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
}

template< class TSample >
inline typename WeightedCentroidKdTreeGenerator< TSample >::KdTreeNodeType*
WeightedCentroidKdTreeGenerator< TSample >
::GenerateNonterminalNode(unsigned int beginIndex,
                          unsigned int endIndex,
                          MeasurementVectorType &lowerBound,
                          MeasurementVectorType &upperBound,
                          unsigned int level)
{
  MeasurementType dimensionLowerBound;
  MeasurementType dimensionUpperBound;
  MeasurementType partitionValue;
  unsigned int partitionDimension = 0;
  unsigned int i;
  unsigned int j;
  MeasurementType spread;
  MeasurementType maxSpread;
  unsigned int medianIndex;

  SubsamplePointer subsample = this->GetSubsample();

  // Sanity check. Verify that the subsample has measurement vectors of the
  // same length as the sample generated by the tree.
  if( this->GetMeasurementVectorSize() != subsample->GetMeasurementVectorSize() )
    {
    itkExceptionMacro( << "Measurement Vector Length mismatch" );
    }

  // calculates the weighted centroid which is the vector sum
  // of all the associated instances.
  typename KdTreeNodeType::CentroidType weightedCentroid;
  MeasurementVectorTraits::SetLength( weightedCentroid, this->GetMeasurementVectorSize() );
  MeasurementVectorType tempVector;
  weightedCentroid.Fill(NumericTraits< MeasurementType >::Zero);

  for (i = beginIndex; i < endIndex; i++)
    {
    tempVector = subsample->GetMeasurementVectorByIndex(i);
    for(j = 0; j < this->GetMeasurementVectorSize(); j++)
      {
      weightedCentroid[j] += tempVector[j];
      }
    }

  // find most widely spread dimension
  FindSampleBoundAndMean< SubsampleType >(this->GetSubsample(),
                                          beginIndex, endIndex,
                                          m_TempLowerBound, m_TempUpperBound,
                                          m_TempMean);

  maxSpread = NumericTraits< MeasurementType >::NonpositiveMin();
  for (i = 0; i < this->GetMeasurementVectorSize(); i++)
    {
    spread = m_TempUpperBound[i] - m_TempLowerBound[i];
    if (spread >= maxSpread)
      {
      maxSpread = spread;
      partitionDimension = i;
      }
    }


  medianIndex = (endIndex - beginIndex) / 2;

  //
  // Find the medial element by using the NthElement function
  // based on the STL implementation of the QuickSelect algorithm.
  //
  partitionValue =
    NthElement< SubsampleType >(this->GetSubsample(),
                                 partitionDimension,
                                 beginIndex, endIndex, 
                                 medianIndex);
             
  medianIndex += beginIndex;

  // save bounds for cutting dimension
  dimensionLowerBound = lowerBound[partitionDimension];
  dimensionUpperBound = upperBound[partitionDimension];

  upperBound[partitionDimension] = partitionValue;
  const unsigned int beginLeftIndex = beginIndex;
  const unsigned int endLeftIndex   = medianIndex;
  KdTreeNodeType* left = GenerateTreeLoop(beginLeftIndex, endLeftIndex, lowerBound, upperBound, level + 1);
  upperBound[partitionDimension] = dimensionUpperBound;

  lowerBound[partitionDimension] = partitionValue;
  const unsigned int beginRightIndex = medianIndex+1;
  const unsigned int endRighIndex    = endIndex;
  KdTreeNodeType* right = GenerateTreeLoop(beginRightIndex, endRighIndex, lowerBound, upperBound, level + 1);
  lowerBound[partitionDimension] = dimensionLowerBound;


  typedef KdTreeWeightedCentroidNonterminalNode< TSample >  KdTreeNonterminalNodeType;

  KdTreeNonterminalNodeType * nonTerminalNode =
    new KdTreeNonterminalNodeType( partitionDimension, 
                                   partitionValue,
                                   left, right,
                                   weightedCentroid,
                                   endIndex - beginIndex);

  nonTerminalNode->AddInstanceIdentifier(
    subsample->GetInstanceIdentifier( medianIndex ) );

  return nonTerminalNode;
}

} // end of namespace Statistics
} // end of namespace itk

#endif