File: itkConjugateGradientOptimizer.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (181 lines) | stat: -rw-r--r-- 4,205 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkConjugateGradientOptimizer.cxx,v $
  Language:  C++
  Date:      $Date: 2007-03-22 14:29:13 $
  Version:   $Revision: 1.25 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkConjugateGradientOptimizer_txx
#define _itkConjugateGradientOptimizer_txx

#include "itkConjugateGradientOptimizer.h"

namespace itk
{

/**
 * Constructor
 */
ConjugateGradientOptimizer
::ConjugateGradientOptimizer()
{
  m_OptimizerInitialized    = false;
  m_VnlOptimizer            = 0;
}


/**
 * Destructor
 */
ConjugateGradientOptimizer
::~ConjugateGradientOptimizer()
{
  delete m_VnlOptimizer;
}


/**
 * Get the Optimizer
 */
vnl_conjugate_gradient * 
ConjugateGradientOptimizer
::GetOptimizer( void ) 
{
  return m_VnlOptimizer;
}

/**
 * Connect a Cost Function
 */
void
ConjugateGradientOptimizer
::SetCostFunction( SingleValuedCostFunction * costFunction )
{

  const unsigned int numberOfParameters = 
    costFunction->GetNumberOfParameters();

  CostFunctionAdaptorType * adaptor = 
    new CostFunctionAdaptorType( numberOfParameters );
       
  adaptor->SetCostFunction( costFunction );

  if( m_OptimizerInitialized )
    { 
    delete m_VnlOptimizer;
    }
    
  this->SetCostFunctionAdaptor( adaptor );

  m_VnlOptimizer = new vnl_conjugate_gradient( *adaptor );
  m_OptimizerInitialized = true;

}

/** Return Current Value */
ConjugateGradientOptimizer::MeasureType
ConjugateGradientOptimizer
::GetValue() const
{
  ParametersType parameters = this->GetCurrentPosition();
  if(m_ScalesInitialized)
    {
    const ScalesType scales = this->GetScales();
    for(unsigned int i=0;i<parameters.size();i++)
      {
      parameters[i] *= scales[i]; 
      }
    }
  return this->GetNonConstCostFunctionAdaptor()->f( parameters );
}

/**
 * Start the optimization
 */
void
ConjugateGradientOptimizer
::StartOptimization( void )
{
  this->InvokeEvent( StartEvent() );

  if( this->GetMaximize() )
    {
    this->GetNonConstCostFunctionAdaptor()->NegateCostFunctionOn();
    }

  ParametersType initialPosition = this->GetInitialPosition();

  ParametersType parameters(initialPosition);

  // If the user provides the scales then we set otherwise we don't
  // for computation speed.
  // We also scale the initial parameters up if scales are defined.
  // This compensates for later scaling them down in the cost function adaptor
  // and at the end of this function.  
  if(m_ScalesInitialized)
    {
    ScalesType scales = this->GetScales();
    this->GetNonConstCostFunctionAdaptor()->SetScales(scales);
    for(unsigned int i=0;i<parameters.size();i++)
      {
      parameters[i] *= scales[i]; 
      }
    }
  

  // vnl optimizers return the solution by reference 
  // in the variable provided as initial position
  m_VnlOptimizer->minimize( parameters );
  
  // we scale the parameters down if scales are defined
  if(m_ScalesInitialized)
    {
    ScalesType scales = this->GetScales();
    for(unsigned int i=0;i<parameters.size();i++)
      {
      parameters[i] /= scales[i]; 
      }
    }

  this->SetCurrentPosition( parameters );
    
  this->InvokeEvent( EndEvent() );
    
}


/**
 * Get the maximum number of evaluations of the function.
 * In vnl this is used instead of a maximum number of iterations
 * given that an iteration could imply several evaluations.
 */
unsigned long 
ConjugateGradientOptimizer
::GetNumberOfIterations( void ) const
{
  return m_VnlOptimizer->get_max_function_evals();
}


/**
 * Get the number of iterations in the last optimization.
 */
unsigned long 
ConjugateGradientOptimizer
::GetCurrentIteration( void ) const
{
  return m_VnlOptimizer->get_num_iterations();
}

} // end namespace itk

#endif