1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkCumulativeGaussianOptimizer.cxx,v $
Language: C++
Date: $Date: 2009-10-27 16:05:46 $
Version: $Revision: 1.20 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkCumulativeGaussianOptimizer_cxx
#define _itkCumulativeGaussianOptimizer_cxx
#include "itkCumulativeGaussianOptimizer.h"
#include "assert.h"
#include "itkMath.h"
namespace itk
{
CumulativeGaussianOptimizer::CumulativeGaussianOptimizer()
{
// Set some initial values for the variables.
m_ComputedMean = 0;
m_ComputedStandardDeviation = 0;
m_ComputedAmplitude = 0;
m_ComputedTransitionHeight = 0;
m_UpperAsymptote = 0;
m_LowerAsymptote = 0;
m_OffsetForMean = 0;
m_DifferenceTolerance = 1e-10;
m_Verbose = 0;
m_FitError = 0;
m_FinalSampledArray = NULL;
m_CumulativeGaussianArray = NULL;
m_StopConditionDescription << this->GetNameOfClass() << ": Constructed";
}
CumulativeGaussianOptimizer::~CumulativeGaussianOptimizer()
{
delete m_FinalSampledArray;
}
CumulativeGaussianOptimizer::MeasureType *
CumulativeGaussianOptimizer
::ExtendGaussian(MeasureType * originalArray, MeasureType * extendedArray, int startingPointForInsertion)
{
// Use the parameters from originalArray to construct a Gaussian in extendedArray
// shifting the mean to the right by startingPointForInsertion.
double mean = startingPointForInsertion + m_ComputedMean;
double sd = m_ComputedStandardDeviation;
double amplitude = m_ComputedAmplitude;
m_OffsetForMean = startingPointForInsertion;
for(int i=0; i<(int)(extendedArray->GetNumberOfElements()); i++)
{
extendedArray->put(i, amplitude * vcl_exp(- ( vcl_pow((i-mean),2) / (2*vcl_pow(sd,2)) ) ));
}
// Then insert the originalArray over the middle section of extendedArray.
for(int i=0; i<(int)(originalArray->GetNumberOfElements()); i++)
{
extendedArray->put(i+startingPointForInsertion, originalArray->get(i));
}
return extendedArray;
}
double
CumulativeGaussianOptimizer
::FindAverageSumOfSquaredDifferences(MeasureType * array1, MeasureType * array2)
{
// Given two arrays array1 and array2 of equal length, calculate the average sum of squared
// differences between them.
int size = array1->GetNumberOfElements();
double sum = 0;
for (int i=0; i<size; i++)
sum = sum + (array1->get(i) - array2->get(i)) * (array1->get(i) - array2->get(i));
return (sum/size);
}
void
CumulativeGaussianOptimizer
::FindParametersOfGaussian(MeasureType * sampledGaussianArray)
{
// Measure the parameters of the sampled Gaussian curve and use these parameters to
// construct an extended curve. Then measure the parameters of the extended curve, which
// should be closer to the original Gaussian parameters and recalculate the extended portion
// of the curve. Iterate these last two steps until the average sum of squared differences
// between 2 iterations converge within differenceTolerance.
MeasureGaussianParameters(sampledGaussianArray);
if(m_Verbose)
{
PrintComputedParameterHeader();
PrintComputedParameters();
}
int sampledGaussianArraySize = sampledGaussianArray->GetNumberOfElements();
int extendedArraySize = 3 * sampledGaussianArraySize;
MeasureType * extendedArray = new MeasureType();
extendedArray->SetSize(extendedArraySize);
MeasureType * extendedArrayCopy = new MeasureType();
extendedArrayCopy->SetSize(extendedArraySize);
double averageSumOfSquaredDifferences = m_DifferenceTolerance;
extendedArray = ExtendGaussian(sampledGaussianArray, extendedArray, sampledGaussianArraySize);
MeasureGaussianParameters(extendedArray);
bool smallChangeBetweenIterations = false;
while (averageSumOfSquaredDifferences >= m_DifferenceTolerance)
{
for(int j = 0; j < extendedArraySize; j++)
{
extendedArrayCopy->put(j, extendedArray->get(j));
}
extendedArray = RecalculateExtendedArrayFromGaussianParameters(sampledGaussianArray,
extendedArray,
sampledGaussianArraySize);
MeasureGaussianParameters(extendedArray);
if(m_Verbose)
{
PrintComputedParameters();
}
double temp = averageSumOfSquaredDifferences;
averageSumOfSquaredDifferences = FindAverageSumOfSquaredDifferences(extendedArray, extendedArrayCopy);
// Stop if there is a very very very small change between iterations.
if(vcl_fabs(temp - averageSumOfSquaredDifferences) <= m_DifferenceTolerance)
{
m_StopConditionDescription.str("");
m_StopConditionDescription << this->GetNameOfClass() << ": "
<< "Change between iterations ("
<< vcl_fabs(temp - averageSumOfSquaredDifferences)
<< ") is less than DifferenceTolerance ("
<< m_DifferenceTolerance
<< ").";
break;
}
}
if (!smallChangeBetweenIterations)
{
m_StopConditionDescription.str("");
m_StopConditionDescription << this->GetNameOfClass() << ": "
<< "Average sum of squared differences ("
<< averageSumOfSquaredDifferences
<< ") is less than DifferenceTolerance ("
<< m_DifferenceTolerance
<< ").";
}
// Update the mean calculation.
m_ComputedMean = m_ComputedMean - m_OffsetForMean;
delete extendedArray;
delete extendedArrayCopy;
}
void CumulativeGaussianOptimizer
::MeasureGaussianParameters(MeasureType * array)
{
// Assuming the input array is Gaussian, compute the mean, SD, amplitude, and change in intensity.
m_ComputedMean = 0;
m_ComputedStandardDeviation = 0;
m_ComputedAmplitude = 0;
m_ComputedTransitionHeight = 0;
double sum = 0;
// Calculate the mean.
for(int i = 0; i < (int)(array->GetNumberOfElements()); i++)
{
m_ComputedMean += i * array->get(i);
sum += array->get(i);
}
// Assertion fails if number of samples <=2 or UpperAsymptote==LowerAsymptote
// improper behavior if number of samples == 3.
assert(sum != 0);
m_ComputedMean /= sum;
// Calculate the standard deviation
for(int i = 0; i < (int)(array->GetNumberOfElements()); i++)
{
m_ComputedStandardDeviation += array->get(i) * vcl_pow((i - m_ComputedMean), 2);
}
m_ComputedStandardDeviation = vcl_sqrt(m_ComputedStandardDeviation/sum );
// For the ERF, sum is the difference between the lower and upper intensities.
m_ComputedTransitionHeight = sum;
// Calculate the amplitude.
m_ComputedAmplitude = sum / (m_ComputedStandardDeviation * vcl_sqrt(2*vnl_math::pi));
}
void
CumulativeGaussianOptimizer
::PrintComputedParameterHeader()
{
std::cerr << "Mean\t" << "SD\t" << "Amp\t" << "Transition" <<std::endl;
}
void CumulativeGaussianOptimizer
::PrintComputedParameters()
{
std::cerr << m_ComputedMean - m_OffsetForMean << "\t" // Printed mean is shifted.
<< m_ComputedStandardDeviation << "\t"
<< m_ComputedAmplitude << "\t"
<< m_ComputedTransitionHeight << std::endl;
}
CumulativeGaussianOptimizer::MeasureType *
CumulativeGaussianOptimizer
::RecalculateExtendedArrayFromGaussianParameters(MeasureType * originalArray,
MeasureType * extendedArray,
int startingPointForInsertion)
{
// From the Gaussian parameters stored with the extendedArray,
// recalculate the extended portion of the extendedArray,
// leaving the inserted original array unchaged.
double mean = m_ComputedMean;
double sd = m_ComputedStandardDeviation;
double amplitude = m_ComputedAmplitude;
for(int i = 0; i < (int)(extendedArray->GetNumberOfElements()); i++)
{
// Leave the original inserted array unchanged.
if( i < startingPointForInsertion ||
i >= startingPointForInsertion + (int)(originalArray->GetNumberOfElements()) )
{
extendedArray->put(i, amplitude * vcl_exp(-(vcl_pow((i - mean),2) / (2 * vcl_pow(sd,2)))));
}
}
return extendedArray;
}
void
CumulativeGaussianOptimizer
::SetDataArray(MeasureType * cumGaussianArray)
{
m_CumulativeGaussianArray = cumGaussianArray;
}
void
CumulativeGaussianOptimizer
::StartOptimization()
{
this->InvokeEvent( StartEvent() );
m_StopConditionDescription.str("");
m_StopConditionDescription << this->GetNameOfClass() << ": Running";
// Declare arrays.
int cumGaussianArraySize = m_CumulativeGaussianArray->GetNumberOfElements();
int sampledGaussianArraySize = cumGaussianArraySize;
// int cumGaussianArrayCopySize = cumGaussianArraySize;
MeasureType * sampledGaussianArray = new MeasureType();
sampledGaussianArray->SetSize(sampledGaussianArraySize);
MeasureType * cumGaussianArrayCopy = new MeasureType();
cumGaussianArrayCopy->SetSize(cumGaussianArraySize);
// Make a copy of the Cumulative Gaussian sampled data array.
for(int j = 0; j < cumGaussianArraySize; j++)
{
cumGaussianArrayCopy->put(j, m_CumulativeGaussianArray->get(j));
}
// Take the derivative of the data array resulting in a Gaussian array.
MeasureType * derivative = new MeasureType();
derivative->SetSize(cumGaussianArraySize - 1);
for(int i=1; i < (int)(derivative->GetNumberOfElements()+1); i++)
{
derivative->put(i-1, m_CumulativeGaussianArray->get(i) - m_CumulativeGaussianArray->get(i-1) );
}
m_CumulativeGaussianArray = derivative;
// Iteratively recalculate and resample the Gaussian array.
FindParametersOfGaussian(m_CumulativeGaussianArray);
// Generate new Gaussian array with final parameters.
for(int i = 0; i < sampledGaussianArraySize; i++)
{
sampledGaussianArray->put(i, m_ComputedAmplitude * vcl_exp(- ( vcl_pow((i-m_ComputedMean),2) / (2*vcl_pow(m_ComputedStandardDeviation,2)) ) ));
}
// Add 0.5 to the mean of the sampled Gaussian curve to make up for the 0.5
// shift during derivation, then take the integral of the Gaussian sample
// to produce a Cumulative Gaussian.
for(int i = sampledGaussianArraySize-1; i > 0; i--)
{
sampledGaussianArray->put(i-1, sampledGaussianArray->get(i) - sampledGaussianArray->get(i-1));
}
m_ComputedMean += 0.5;
// Find the best vertical shift that minimizes the least square error.
double c = VerticalBestShift(cumGaussianArrayCopy, sampledGaussianArray);
// Add constant c to array.
for(int i = 0; i < (int)(sampledGaussianArray->GetNumberOfElements()); i++)
{
sampledGaussianArray->put(i, sampledGaussianArray->get(i) + c);
}
// Calculate the mean, standard deviation, lower and upper asymptotes of the
// sampled Cumulative Gaussian.
int floorOfMean = (int)(m_ComputedMean);
double yFloorOfMean = sampledGaussianArray->get(floorOfMean);
double yCeilingOfMean = sampledGaussianArray->get(floorOfMean + 1);
double y = (m_ComputedMean-floorOfMean)*(yCeilingOfMean-yFloorOfMean)+yFloorOfMean;
m_UpperAsymptote = y + m_ComputedTransitionHeight/2;
m_LowerAsymptote = y - m_ComputedTransitionHeight/2;
m_FinalSampledArray = new MeasureType();
m_FinalSampledArray->SetSize(sampledGaussianArray->GetNumberOfElements());
for(int i = 0; i < (int)(m_FinalSampledArray->GetNumberOfElements()); i++)
{
m_FinalSampledArray->put(i, sampledGaussianArray->get(i));
}
// Calculate the least square error as a measure of goodness of fit.
m_FitError = static_cast<CostFunctionType*>(m_CostFunction.GetPointer())->CalculateFitError(sampledGaussianArray);
delete sampledGaussianArray;
delete cumGaussianArrayCopy;
delete derivative;
}
void CumulativeGaussianOptimizer::PrintArray(MeasureType * array)
{
for(int i = 0; i < (int)(array->GetNumberOfElements()); i++)
{
std::cerr << i << " " << array->get(i) << std::endl;
}
}
double
CumulativeGaussianOptimizer
::VerticalBestShift(MeasureType * originalArray, MeasureType * newArray)
{
// Find the constant to minimize the sum of squares of the difference between original Array and newArray+c
// Proof of algorithm:
// Let A = the original array.
// Let B = the new array.
// Let n = the number of elements in each array (note they must be the same).
// We want to mimimize sum(((Bi+c) - (Ai))^2).
// So we take the derivative with respect to c and equate this derivative to 0.
// d/dc sum(((Bi+c) - (Ai))^2) dc = 0
// => sum (2(Bi+c - Ai)) = 0
// => sum (Bi + c - Ai) = 0
// => (sum(Bi)) + (sum(c)) - (sum(Ai)) = 0
// => nC = sum(Ai) - sum(Bi)
// => C = (sum(Ai) - sum(Bi)) / n
double c = 0;
int size = originalArray->GetNumberOfElements();
for(int i=0; i<size; i++)
{
c += originalArray->get(i);
}
for(int i=0; i<size; i++)
{
c -= newArray->get(i);
}
return (c/size);
}
const std::string
CumulativeGaussianOptimizer
::GetStopConditionDescription() const
{
return m_StopConditionDescription.str();
}
void
CumulativeGaussianOptimizer
::PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "Difference Tolerance = " << m_DifferenceTolerance << std::endl;
os << indent << "Computed Mean = " << m_ComputedMean << std::endl;
os << indent << "Computed Standard Deviation = " << m_ComputedStandardDeviation << std::endl;
os << indent << "Computed Amplitude = " << m_ComputedAmplitude << std::endl;
os << indent << "Computed Transition Height = " << m_ComputedTransitionHeight << std::endl;
os << indent << "Upper Asymptote = " << m_UpperAsymptote << std::endl;
os << indent << "Lower Asymptote = " << m_LowerAsymptote << std::endl;
os << indent << "Offset For Mean = " << m_OffsetForMean << std::endl;
os << indent << "Verbose = " << m_Verbose << std::endl;
os << indent << "Fit Error = " << m_FitError << std::endl;
os << indent << "StopConditionDescription: " << m_StopConditionDescription << std::endl;
if(m_FinalSampledArray)
{
os << indent << "Final Sampled Array = " << m_FinalSampledArray << std::endl;
}
else
{
os << indent << "Final Sampled Array = [not defined] " << std::endl;
}
}
} // end namespace itk
#endif
|