1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: itkLevenbergMarquardtOptimizer.cxx,v $
Language: C++
Date: $Date: 2009-06-24 12:02:52 $
Version: $Revision: 1.27 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkLevenbergMarquardtOptimizer_txx
#define _itkLevenbergMarquardtOptimizer_txx
#include "itkLevenbergMarquardtOptimizer.h"
namespace itk
{
/**
* Constructor
*/
LevenbergMarquardtOptimizer
::LevenbergMarquardtOptimizer()
{
m_OptimizerInitialized = false;
m_VnlOptimizer = 0;
m_NumberOfIterations = 2000;
m_ValueTolerance = 1e-8;
m_GradientTolerance = 1e-5;
m_EpsilonFunction = 1e-11;
}
/**
* Destructor
*/
LevenbergMarquardtOptimizer
::~LevenbergMarquardtOptimizer()
{
delete m_VnlOptimizer;
}
/**
* Connect a Cost Function
*/
void
LevenbergMarquardtOptimizer
::SetCostFunction( MultipleValuedCostFunction * costFunction )
{
const unsigned int numberOfParameters = costFunction->GetNumberOfParameters();
const unsigned int numberOfValues = costFunction->GetNumberOfValues();
CostFunctionAdaptorType * adaptor =
new CostFunctionAdaptorType( numberOfParameters, numberOfValues );
adaptor->SetCostFunction( costFunction );
if( m_OptimizerInitialized )
{
delete m_VnlOptimizer;
}
this->SetCostFunctionAdaptor( adaptor );
m_VnlOptimizer = new vnl_levenberg_marquardt( *adaptor );
this->SetNumberOfIterations(m_NumberOfIterations);
this->SetValueTolerance(m_ValueTolerance);
this->SetGradientTolerance(m_GradientTolerance);
this->SetEpsilonFunction(m_EpsilonFunction);
m_OptimizerInitialized = true;
}
/** Return Current Value */
LevenbergMarquardtOptimizer::MeasureType
LevenbergMarquardtOptimizer
::GetValue() const
{
MeasureType measures;
const CostFunctionAdaptorType * adaptor =
this->GetCostFunctionAdaptor();
if( adaptor )
{
const MultipleValuedCostFunction * costFunction =
adaptor->GetCostFunction();
if( costFunction )
{
const unsigned int numberOfValues =
costFunction->GetNumberOfValues();
measures.SetSize( numberOfValues );
ParametersType parameters = this->GetCurrentPosition();
if(m_ScalesInitialized)
{
const ScalesType scales = this->GetScales();
for(unsigned int i=0;i<parameters.size();i++)
{
parameters[i] *= scales[i];
}
}
this->GetNonConstCostFunctionAdaptor()->f(parameters,measures);
}
}
return measures;
}
/**
* Start the optimization
*/
void
LevenbergMarquardtOptimizer
::StartOptimization( void )
{
this->InvokeEvent( StartEvent() );
ParametersType initialPosition = GetInitialPosition();
ParametersType parameters( initialPosition );
// If the user provides the scales then we set otherwise we don't
// for computation speed.
// We also scale the initial parameters up if scales are defined.
// This compensates for later scaling them down in the cost function adaptor
// and at the end of this function.
if(m_ScalesInitialized)
{
ScalesType scales = this->GetScales();
this->GetNonConstCostFunctionAdaptor()->SetScales(scales);
for(unsigned int i=0;i<parameters.size();i++)
{
parameters[i] *= scales[i];
}
}
if( this->GetCostFunctionAdaptor()->GetUseGradient() )
{
m_VnlOptimizer->minimize_using_gradient( parameters );
}
else
{
m_VnlOptimizer->minimize_without_gradient( parameters );
}
// we scale the parameters down if scales are defined
if(m_ScalesInitialized)
{
ScalesType scales = this->GetScales();
for(unsigned int i=0;i<parameters.size();i++)
{
parameters[i] /= scales[i];
}
}
this->SetCurrentPosition(parameters);
this->InvokeEvent( EndEvent() );
}
/** Set the maximum number of iterations */
void
LevenbergMarquardtOptimizer
::SetNumberOfIterations(unsigned int iterations)
{
if(m_VnlOptimizer)
{
m_VnlOptimizer->set_max_function_evals(iterations);
}
m_NumberOfIterations = iterations;
}
/** Set the maximum number of iterations */
void
LevenbergMarquardtOptimizer
::SetValueTolerance(double tol)
{
if(m_VnlOptimizer)
{
m_VnlOptimizer->set_x_tolerance(tol);
}
m_ValueTolerance = tol;
}
/** Set Gradient Tolerance */
void
LevenbergMarquardtOptimizer
::SetGradientTolerance(double tol)
{
if(m_VnlOptimizer)
{
m_VnlOptimizer->set_g_tolerance(tol);
}
m_GradientTolerance = tol;
}
/** Set Epsilon function */
void
LevenbergMarquardtOptimizer
::SetEpsilonFunction(double epsilon)
{
if(m_VnlOptimizer)
{
m_VnlOptimizer->set_epsilon_function(epsilon);
}
m_EpsilonFunction = epsilon;
}
/** Get the Optimizer */
vnl_levenberg_marquardt *
LevenbergMarquardtOptimizer
::GetOptimizer() const
{
return m_VnlOptimizer;
}
const std::string
LevenbergMarquardtOptimizer
::GetStopConditionDescription() const
{
OStringStream reason, outcome;
outcome.str("");
if (GetOptimizer())
{
GetOptimizer()->diagnose_outcome(outcome);
}
reason << this->GetNameOfClass() << ": " << (outcome.str().size() > 0) ? outcome.str().c_str() : "";
return reason.str();
}
} // end namespace itk
#endif
|