File: itkMultipleValuedNonLinearVnlOptimizer.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (166 lines) | stat: -rw-r--r-- 4,428 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkMultipleValuedNonLinearVnlOptimizer.cxx,v $
  Language:  C++
  Date:      $Date: 2007-03-22 21:39:37 $
  Version:   $Revision: 1.13 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef _itkMultipleValuedNonLinearVnlOptimizer_txx
#define _itkMultipleValuedNonLinearVnlOptimizer_txx

#include "itkMultipleValuedNonLinearVnlOptimizer.h"

namespace itk
{

/**
 * Constructor
 */
MultipleValuedNonLinearVnlOptimizer
::MultipleValuedNonLinearVnlOptimizer()
{
  m_CostFunctionAdaptor = 0;
  m_UseGradient = true;
  m_Command = CommandType::New();
  m_Command->SetCallbackFunction( this, 
      &MultipleValuedNonLinearVnlOptimizer::IterationReport );
  m_CachedValue.Fill(0);
  m_CachedCurrentPosition.Fill(0);
  m_CachedDerivative.Fill(0);
}


/**
 * Destructor
 */
MultipleValuedNonLinearVnlOptimizer
::~MultipleValuedNonLinearVnlOptimizer()
{
  if( m_CostFunctionAdaptor )
    {
    delete m_CostFunctionAdaptor;
    m_CostFunctionAdaptor = 0;
    }
}

void 
MultipleValuedNonLinearVnlOptimizer
::SetCostFunctionAdaptor( CostFunctionAdaptorType * adaptor )
{

  if( m_CostFunctionAdaptor == adaptor ) 
    {
    return;
    }

  if( m_CostFunctionAdaptor )
    {
    delete m_CostFunctionAdaptor;
    }

  m_CostFunctionAdaptor = adaptor; 

  this->SetUseCostFunctionGradient(m_UseGradient);

  m_CostFunctionAdaptor->AddObserver( IterationEvent(), m_Command );
}

const MultipleValuedNonLinearVnlOptimizer::CostFunctionAdaptorType * 
MultipleValuedNonLinearVnlOptimizer
::GetCostFunctionAdaptor( void ) const
{
  return m_CostFunctionAdaptor;
}


MultipleValuedNonLinearVnlOptimizer::CostFunctionAdaptorType * 
MultipleValuedNonLinearVnlOptimizer
::GetCostFunctionAdaptor( void )
{
  return m_CostFunctionAdaptor;
}

/** The purpose of this method is to get around the lack of const 
 * correctness in vnl cost_functions and optimizers */
MultipleValuedNonLinearVnlOptimizer::CostFunctionAdaptorType * 
MultipleValuedNonLinearVnlOptimizer
::GetNonConstCostFunctionAdaptor( void ) const
{
  return m_CostFunctionAdaptor;
}


void
MultipleValuedNonLinearVnlOptimizer
::SetUseCostFunctionGradient( bool useGradient ) 
{
  if( m_CostFunctionAdaptor )
    {
    m_CostFunctionAdaptor->SetUseGradient( useGradient );
    }
  else
    {
    m_UseGradient = useGradient;
    }
}

bool
MultipleValuedNonLinearVnlOptimizer
::GetUseCostFunctionGradient() const
{
  if( m_CostFunctionAdaptor )
    {
    return m_CostFunctionAdaptor->GetUseGradient();
    }
  else
    {
    return m_UseGradient;
    }
}

/** The purpose of this method is to get around the lack of iteration reporting
 * in VNL optimizers. By interfacing directly with the ITK cost function
 * adaptor we are generating here Iteration Events. Note the iteration events
 * here are produce PER EVALUATION of the metric, not per real iteration of the
 * vnl optimizer. Optimizers that evaluate the metric multiple times at each
 * iteration will generate a lot more of Iteration events here. */
void
MultipleValuedNonLinearVnlOptimizer
::IterationReport( const EventObject & event ) 
{
  const CostFunctionAdaptorType * adaptor = this->GetCostFunctionAdaptor();
  m_CachedValue = adaptor->GetCachedValue();
  m_CachedDerivative = adaptor->GetCachedDerivative();
  m_CachedCurrentPosition = adaptor->GetCachedCurrentParameters();
  this->InvokeEvent( event );
}


/**
 * PrintSelf
 */
void
MultipleValuedNonLinearVnlOptimizer
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf( os, indent );
  os << indent << "Cached Value: " << m_CachedValue << std::endl;
  os << indent << "Cached Derivative: " << m_CachedDerivative << std::endl;
  os << indent << "Cached current positiion: "
     << m_CachedCurrentPosition << std::endl;
  os << "Command observer " << m_Command.GetPointer() << std::endl;
  os << "Cost Function adaptor" << m_CostFunctionAdaptor << std::endl;
}

} // end namespace itk

#endif