File: itkQuaternionRigidTransformGradientDescentOptimizer.h

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (87 lines) | stat: -rw-r--r-- 3,193 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkQuaternionRigidTransformGradientDescentOptimizer.h,v $
  Language:  C++
  Date:      $Date: 2007-03-22 14:29:14 $
  Version:   $Revision: 1.14 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkQuaternionRigidTransformGradientDescentOptimizer_h
#define __itkQuaternionRigidTransformGradientDescentOptimizer_h

#include "itkGradientDescentOptimizer.h"

namespace itk
{
  
/** \class QuaternionRigidTransformGradientDescentOptimizer
 * \brief Implement a gradient descent optimizer
 *
 * QuaternionRigidTransformGradientDescentOptimizer is an extension to the
 * simple gradient descent optimizer implmented in GradientDescentOptimizer.
 * At each iteration the current position is updated according to
 *
 * p(n+1) = p(n) + learningRate * d f(p(n)) / d p(n)
 *
 * \f[ 
 *        p_{n+1} = p_n 
 *                + \mbox{learningRate} 
 *                \, \frac{\partial f(p_n) }{\partial p_n} 
 * \f]
 *
 * The learning rate is a fixed scalar defined via SetLearningRate().
 * The optimizer steps through a user defined number of iterations;
 * no convergence checking is done.
 * The first four components of p are assumed to be the four components
 * of the quaternion. After each update, the quaternion is normalized to 
 * have a magnitude of one. This ensures the the transform is purely rigid.
 * 
 * \sa GradientDescentOptimizer
 * \ingroup Numerics Optimizers
 */  
class ITK_EXPORT QuaternionRigidTransformGradientDescentOptimizer : 
    public GradientDescentOptimizer
{
public:
  /** Standard class typedefs. */
  typedef QuaternionRigidTransformGradientDescentOptimizer  Self;
  typedef GradientDescentOptimizer                          Superclass;
  typedef SmartPointer<Self>                                Pointer;
  typedef SmartPointer<const Self>                          ConstPointer;
  
  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information (and related methods). */
  itkTypeMacro( QuaternionRigidTransformGradientDescentOptimizer, 
                GradientDescentOptimizer );

  /**  Parameters type.
   *  It defines a position in the optimization search space. */
  typedef Superclass::ParametersType ParametersType;

  /** Advance one step following the gradient direction. */
  virtual void AdvanceOneStep( void );

protected:
  QuaternionRigidTransformGradientDescentOptimizer() {};
  virtual ~QuaternionRigidTransformGradientDescentOptimizer() {};

private:
  QuaternionRigidTransformGradientDescentOptimizer(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented
  
};

} // end namespace itk


#endif