File: itkSingleValuedVnlCostFunctionAdaptor.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (264 lines) | stat: -rw-r--r-- 7,472 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkSingleValuedVnlCostFunctionAdaptor.cxx,v $
  Language:  C++
  Date:      $Date: 2008-04-30 23:25:18 $
  Version:   $Revision: 1.22 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "itkSingleValuedVnlCostFunctionAdaptor.h"
#include "itkExceptionObject.h"


namespace itk
{
  
/**  Constructor.  */
SingleValuedVnlCostFunctionAdaptor 
::SingleValuedVnlCostFunctionAdaptor(unsigned int spaceDimension):
  vnl_cost_function(spaceDimension) 
{ 
  m_ScalesInitialized = false;
  m_NegateCostFunction = false;
  m_Reporter = Object::New();
}
    
/** Set current parameters scaling. */
void
SingleValuedVnlCostFunctionAdaptor
::SetScales(const ScalesType & scales)
{
  m_Scales = scales;
  m_ScalesInitialized = true;
}   


/**  Delegate computation of the value to the CostFunction. */
SingleValuedVnlCostFunctionAdaptor::InternalMeasureType 
SingleValuedVnlCostFunctionAdaptor
::f( const InternalParametersType & inparameters )
{
  if( !m_CostFunction )
    {
    itkGenericExceptionMacro(<<"Attempt to use a SingleValuedVnlCostFunctionAdaptor without any CostFunction plugged in");
    }

  // Use scales if they are provided
 ParametersType parameters(inparameters.size());
  if(m_ScalesInitialized)
    {
    for(unsigned int i=0;i<parameters.size();i++)
      {
      parameters[i] = inparameters[i]/m_Scales[i];
      }
    }
  else
    {
    parameters.SetData(const_cast<double*>(inparameters.data_block()));
    }

  InternalMeasureType value = static_cast<InternalMeasureType>( m_CostFunction->GetValue( parameters ));

  if( m_NegateCostFunction )
    {
    value *= -1.0;
    }

  // Notify observers. This is used for overcoming the limitaion of VNL
  // optimizers of not providing callbacks per iteration.
  m_CachedValue = value;
  m_CachedCurrentParameters = parameters;
  this->ReportIteration( FunctionEvaluationIterationEvent() ); 
    
  return value;
}
  


/**  Delegate computation of the gradient to the costfunction.  */
void 
SingleValuedVnlCostFunctionAdaptor
::gradf(  const InternalParametersType   & inparameters,
          InternalDerivativeType   & gradient       )
{
  if( !m_CostFunction )
    {
    itkGenericExceptionMacro("Attempt to use a SingleValuedVnlCostFunctionAdaptor without any CostFunction plugged in");
    }

   // Use scales if they are provided
  ParametersType parameters(inparameters.size()); 
  if(m_ScalesInitialized)
    {
    for(unsigned int i=0;i<parameters.size();i++)
      {
      parameters[i] = inparameters[i]/m_Scales[i];
      }
    }
  else
    {
    parameters.SetData(const_cast<double*>(inparameters.data_block()));
    }
    
  m_CostFunction->GetDerivative( parameters, m_CachedDerivative );
  this->ConvertExternalToInternalGradient( m_CachedDerivative, gradient);
 
  // Notify observers. This is used for overcoming the limitaion of VNL
  // optimizers of not providing callbacks per iteration.
  // Note that m_CachedDerivative is already loaded in the GetDerivative() above.
  m_CachedCurrentParameters = parameters;
  this->ReportIteration( GradientEvaluationIterationEvent() ); 
 
}
  


/**  Delegate computation of value and gradient to the costfunction.     */
void 
SingleValuedVnlCostFunctionAdaptor
::compute( const InternalParametersType   & x,
           InternalMeasureType      * fun, 
           InternalDerivativeType   * g   ) 
{
  // delegate the computation to the CostFunction
  ParametersType parameters( x.size());
  double   measure;
  if(m_ScalesInitialized)
    {
    for(unsigned int i=0;i<parameters.size();i++)
      {
      parameters[i] = x[i]/m_Scales[i];
      }
    }
  else
    {
    parameters.SetData(const_cast<double*>(x.data_block()));
    }
  
  m_CostFunction->GetValueAndDerivative( parameters, measure, m_CachedDerivative );
  if( g ) // sometimes Vnl doesn't pass a valid pointer
    {
    this->ConvertExternalToInternalGradient( m_CachedDerivative, *g );
    }
  if( fun ) // paranoids have longer lives...
    {
    if( !m_NegateCostFunction )
      {
      *fun = static_cast<InternalMeasureType>( measure );  
      }
    else
      {
      *fun = static_cast<InternalMeasureType>( - measure );  
      }
    }
  // Notify observers. This is used for overcoming the limitaion of VNL
  // optimizers of not providing callbacks per iteration.
  // Note that m_CachedDerivative is already loaded in the GetDerivative() above.
  m_CachedValue = *fun;
  m_CachedCurrentParameters = parameters;
  this->ReportIteration( FunctionAndGradientEvaluationIterationEvent() ); 
 
}
  

/**  Convert external derviative measures into internal type  */
void 
SingleValuedVnlCostFunctionAdaptor
::ConvertExternalToInternalGradient( const DerivativeType   & input,
                                     InternalDerivativeType & output ) const
{
  const unsigned int size = input.size();
  output = InternalDerivativeType(size);
  for( unsigned int i=0; i<size; i++ ) 
    {
    if( !m_NegateCostFunction )
      {
      output[i] = input[i];
      }
    else
      {
      output[i] = -input[i];
      }

    if(m_ScalesInitialized)
      {
      output[i] /= m_Scales[i];
      }
    }
}


/**  Set whether the cost function should be negated or not. This is useful for
 * adapting optimizers that are only minimizers. */
void 
SingleValuedVnlCostFunctionAdaptor
::SetNegateCostFunction( bool flag )
{
  m_NegateCostFunction = flag;
}
                                   
/**  Returns whether the cost function is going to be negated or not. 
 *   This is useful for adapting optimizers that are only minimizers. */
bool 
SingleValuedVnlCostFunctionAdaptor
::GetNegateCostFunction() const
{
  return m_NegateCostFunction;
}

/**  This method reports iterations events. It is intended to 
 *   help monitoring the progress of the optimization process. */
void 
SingleValuedVnlCostFunctionAdaptor
::ReportIteration( const EventObject & event ) const
{
  this->m_Reporter->InvokeEvent( event );
}
 


/**  Connects a Command/Observer to the internal reporter class.
 *   This is useful for reporting iteration event to potential observers. */
unsigned long 
SingleValuedVnlCostFunctionAdaptor
::AddObserver(const EventObject & event, Command * command) const
{
  return m_Reporter->AddObserver( event, command );
}


/**  Return the cached value of the cost function */
const SingleValuedVnlCostFunctionAdaptor::MeasureType &
SingleValuedVnlCostFunctionAdaptor
::GetCachedValue() const
{
  return m_CachedValue;
}


/**  Return the cached value of the cost function derivative */
const SingleValuedVnlCostFunctionAdaptor::DerivativeType &
SingleValuedVnlCostFunctionAdaptor
::GetCachedDerivative() const
{
  return m_CachedDerivative;
}

/**  Return the cached value of the parameters used for computing the function */
const SingleValuedVnlCostFunctionAdaptor::ParametersType &
SingleValuedVnlCostFunctionAdaptor
::GetCachedCurrentParameters() const
{
  return m_CachedCurrentParameters;
}

} // end namespace itk