File: DeformableRegistration1.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (391 lines) | stat: -rw-r--r-- 13,200 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: DeformableRegistration1.cxx,v $
  Language:  C++
  Date:      $Date: 2010-04-01 22:19:49 $
  Version:   $Revision: 1.34 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif


#include "itkImageFileReader.h" 
#include "itkImageFileWriter.h" 

#include "itkRescaleIntensityImageFilter.h"
#include "itkHistogramMatchingImageFilter.h"

//  Software Guide : BeginLatex
//
// The finite element (FEM) library within the Insight Toolkit can be
// used to solve deformable image registration problems.  The first step in
// implementing a FEM-based registration is to include the appropriate
// header files.
//
//  \index{Registration!Finite Element-Based}
//
//  Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
#include "itkFEM.h"
#include "itkFEMRegistrationFilter.h"
       
// Software Guide : EndCodeSnippet

//#include "itkFEMFiniteDifferenceFunctionLoad.h"


//  Software Guide : BeginLatex
//
//  Next, we use \code{typedef}s to instantiate all necessary classes.  We
//  define the image and element types we plan to use to solve a
//  two-dimensional registration problem.  We define multiple element
//  types so that they can be used without recompiling the code.
//
//  Software Guide : EndLatex 


//  Software Guide : BeginCodeSnippet
typedef itk::Image<unsigned char, 2>                       fileImageType;
typedef itk::Image<float, 2>                               ImageType;
typedef itk::fem::Element2DC0LinearQuadrilateralMembrane   ElementType;
typedef itk::fem::Element2DC0LinearTriangularMembrane      ElementType2;
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  Note that in order to solve a three-dimensional registration
//  problem, we would simply define 3D image and element types in lieu
//  of those above.  The following declarations could be used for a 3D
//  problem:
//
//  SoftwareGuide : EndLatex


//  SoftwareGuide : BeginCodeSnippet
typedef itk::Image<unsigned char, 3>                    fileImage3DType;
typedef itk::Image<float, 3>                            Image3DType;
typedef itk::fem::Element3DC0LinearHexahedronMembrane   Element3DType;
typedef itk::fem::Element3DC0LinearTetrahedronMembrane  Element3DType2;
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//  
//  Here, we instantiate the load types and explicitly template the
//  load implementation type.  We also define visitors that allow the
//  elements and loads to communicate with one another.  
//
//  Software Guide : EndLatex


//typedef itk::fem::ImageMetricLoad<ImageType,ImageType>     ImageLoadType;

//  Software Guide : BeginCodeSnippet

typedef itk::fem::FiniteDifferenceFunctionLoad<ImageType,ImageType> ImageLoadType;
template class itk::fem::ImageMetricLoadImplementation<ImageLoadType>;

typedef ElementType::LoadImplementationFunctionPointer     LoadImpFP;
typedef ElementType::LoadType                              ElementLoadType;

typedef ElementType2::LoadImplementationFunctionPointer    LoadImpFP2;
typedef ElementType2::LoadType                             ElementLoadType2;

typedef itk::fem::VisitorDispatcher<ElementType,ElementLoadType, LoadImpFP>   
                                                           DispatcherType;

typedef itk::fem::VisitorDispatcher<ElementType2,ElementLoadType2, LoadImpFP2>   
                                                           DispatcherType2;
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  Once all the necessary components have been instantiated, we can
//  instantiate the \doxygen{FEMRegistrationFilter}, which depends on the
//  image input and output types.
//
//  Software Guide : EndLatex


//  Software Guide : BeginCodeSnippet
typedef itk::fem::FEMRegistrationFilter<ImageType,ImageType> RegistrationType;
//  Software Guide : EndCodeSnippet


int main(int argc, char *argv[])
{
  char *paramname;
  if ( argc < 2 )
    {
    std::cout << "Parameter file name missing" << std::endl;
    std::cout << "Usage: " << argv[0] << " param.file" << std::endl;
    return EXIT_FAILURE;
    } 
  else 
    { 
    paramname=argv[1]; 
    }


//  Software Guide : BeginLatex
//  
//  The \doxygen{fem::ImageMetricLoad} must be registered before it
//  can be used correctly with a particular element type.  An example
//  of this is shown below for ElementType.  Similar
//  definitions are required for all other defined element types.
//
//  Software Guide : EndLatex
  
  // Register the correct load implementation with the element-typed visitor dispatcher. 
  {
//  Software Guide : BeginCodeSnippet
  ElementType::LoadImplementationFunctionPointer fp = 
    &itk::fem::ImageMetricLoadImplementation<ImageLoadType>::ImplementImageMetricLoad;
  DispatcherType::RegisterVisitor((ImageLoadType*)0,fp);
//  Software Guide : EndCodeSnippet  
  }
  {
  ElementType2::LoadImplementationFunctionPointer fp =
    &itk::fem::ImageMetricLoadImplementation<ImageLoadType>::ImplementImageMetricLoad;
  DispatcherType2::RegisterVisitor((ImageLoadType*)0,fp);
  }


//  Software Guide : BeginLatex
//  
//  In order to begin the registration, we declare an instance of the
//  FEMRegistrationFilter.  For simplicity, we will call
//  it \code{registrationFilter}.
// 
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
  RegistrationType::Pointer registrationFilter = RegistrationType::New(); 
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
// 
//  Next, we call \code{registrationFilter->SetConfigFileName()} to read the parameter
//  file containing information we need to set up the registration
//  filter (image files, image sizes, etc.).  A sample parameter file is shown at the end of this
//  section, and the individual components are labeled.  
//
//  Software Guide : EndLatex


  // Attempt to read the parameter file, and exit if an error occurs
  registrationFilter->SetConfigFileName(paramname);
  if ( !registrationFilter->ReadConfigFile( 
           (registrationFilter->GetConfigFileName()).c_str() ) ) 
    { 
    return EXIT_FAILURE; 
    }
 
  // Read the image files
  typedef itk::ImageFileReader< fileImageType >      FileSourceType;
  typedef fileImageType::PixelType PixType;

  FileSourceType::Pointer movingfilter = FileSourceType::New();
  movingfilter->SetFileName( (registrationFilter->GetMovingFile()).c_str() );
  FileSourceType::Pointer fixedfilter = FileSourceType::New();
  fixedfilter->SetFileName( (registrationFilter->GetFixedFile()).c_str() );
  std::cout << " reading moving " << registrationFilter->GetMovingFile() << std::endl;
  std::cout << " reading fixed " << registrationFilter->GetFixedFile() << std::endl;
  

  try
    {
    movingfilter->Update();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cerr << "Exception caught during reference file reading " << std::endl;
    std::cerr << e << std::endl;
    return EXIT_FAILURE;
    }
  try
    {
    fixedfilter->Update();
    }
  catch( itk::ExceptionObject & e )
    {
    std::cerr << "Exception caught during target file reading " << std::endl;
    std::cerr << e << std::endl;
    return EXIT_FAILURE;
    }
  

  // Rescale the image intensities so that they fall between 0 and 255
  typedef itk::RescaleIntensityImageFilter<fileImageType,ImageType> FilterType;
  FilterType::Pointer movingrescalefilter = FilterType::New();
  FilterType::Pointer fixedrescalefilter = FilterType::New();

  movingrescalefilter->SetInput(movingfilter->GetOutput());
  fixedrescalefilter->SetInput(fixedfilter->GetOutput());

  const double desiredMinimum =  0.0;
  const double desiredMaximum =  255.0;

  movingrescalefilter->SetOutputMinimum( desiredMinimum );
  movingrescalefilter->SetOutputMaximum( desiredMaximum );
  movingrescalefilter->UpdateLargestPossibleRegion();
  fixedrescalefilter->SetOutputMinimum( desiredMinimum );
  fixedrescalefilter->SetOutputMaximum( desiredMaximum );
  fixedrescalefilter->UpdateLargestPossibleRegion();
  

  // Histogram match the images
  typedef itk::HistogramMatchingImageFilter<ImageType,ImageType> HEFilterType;
  HEFilterType::Pointer IntensityEqualizeFilter = HEFilterType::New();

  IntensityEqualizeFilter->SetReferenceImage( fixedrescalefilter->GetOutput() );
  IntensityEqualizeFilter->SetInput( movingrescalefilter->GetOutput() );
  IntensityEqualizeFilter->SetNumberOfHistogramLevels( 100);
  IntensityEqualizeFilter->SetNumberOfMatchPoints( 15);
  IntensityEqualizeFilter->ThresholdAtMeanIntensityOn();
  IntensityEqualizeFilter->Update();

  registrationFilter->SetFixedImage(fixedrescalefilter->GetOutput());
  registrationFilter->SetMovingImage(IntensityEqualizeFilter->GetOutput());


  itk::ImageFileWriter<ImageType>::Pointer writer;
  writer = itk::ImageFileWriter<ImageType>::New();
  std::string ofn="fixed.mha";
  writer->SetFileName(ofn.c_str());
  writer->SetInput(registrationFilter->GetFixedImage() ); 

  try
    {
    writer->Write();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  ofn="moving.mha";
  itk::ImageFileWriter<ImageType>::Pointer writer2;
  writer2 =  itk::ImageFileWriter<ImageType>::New();
  writer2->SetFileName(ofn.c_str());
  writer2->SetInput(registrationFilter->GetMovingImage() ); 
 
  try
    {
    writer2->Write();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }




//  Software Guide : BeginLatex
// 
//  In order to initialize the mesh of elements, we must first create
//  ``dummy'' material and element objects and assign them to the
//  registration filter.  These objects are subsequently used to
//  either read a predefined mesh from a file or generate a mesh using
//  the software.  The values assigned to the fields within the
//  material object are arbitrary since they will be replaced with
//  those specified in the parameter file.  Similarly, the element
//  object will be replaced with those from the desired mesh.
// 
//  Software Guide : EndLatex
  
//  Software Guide : BeginCodeSnippet
  // Create the material properties
  itk::fem::MaterialLinearElasticity::Pointer m;
  m = itk::fem::MaterialLinearElasticity::New();
  m->GN = 0;                  // Global number of the material
  m->E = registrationFilter->GetElasticity();  // Young's modulus -- used in the membrane
  m->A = 1.0;                 // Cross-sectional area
  m->h = 1.0;                 // Thickness
  m->I = 1.0;                 // Moment of inertia
  m->nu = 0.;                 // Poisson's ratio -- DONT CHOOSE 1.0!!
  m->RhoC = 1.0;              // Density
  
  // Create the element type 
  ElementType::Pointer e1=ElementType::New();
  e1->m_mat=dynamic_cast<itk::fem::MaterialLinearElasticity*>( m );
  registrationFilter->SetElement(e1);
  registrationFilter->SetMaterial(m);
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  Now we are ready to run the registration:
//
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
  registrationFilter->RunRegistration();
//  Software Guide : EndCodeSnippet


//  Software Guide : BeginLatex
//
//  To output the image resulting from the registration, we can call
//  \code{WriteWarpedImage()}.  The image is written in floating point
//  format.
//
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
  registrationFilter->WriteWarpedImage(
        (registrationFilter->GetResultsFileName()).c_str());
//  Software Guide : EndCodeSnippet

//  Software Guide : BeginLatex
//
//  We can also output the displacement fields resulting from the
//  registration, we can call \code{WriteDisplacementField()} with the
//  desired vector component as an argument.  For a $2D$ registration,
//  you would want to write out both the $x$ and $y$ displacements, and
//  this requires two calls to the aforementioned function.
//
//  Software Guide : EndLatex

//  Software Guide : BeginCodeSnippet
  if (registrationFilter->GetWriteDisplacements()) 
    {
    registrationFilter->WriteDisplacementField(0);
    registrationFilter->WriteDisplacementField(1);
    // If this were a 3D example, you might also want to call this line:
    // registrationFilter->WriteDisplacementField(2);

    // We can also write it as a multicomponent vector field
    registrationFilter->WriteDisplacementFieldMultiComponent();
    }
//  Software Guide : EndCodeSnippet

  //  This is a documented sample parameter file that can be used with
  //  this deformable registration example.
  //
  //  ../Data/FiniteElementRegistrationParameters1.txt
  //

  return EXIT_SUCCESS;
}