1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: ImageRegistration1o.cxx,v $
Language: C++
Date: $Date: 2007-11-22 00:30:16 $
Version: $Revision: 1.4 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Software Guide : BeginLatex
//
// This example illustrates the use of the image registration framework in
// Insight. It should be read as a "Hello World" for ITK
// registration. Which means that for now you don't ask "why?". Instead,
// use the example as an introduction to the typical elements involved in
// solving an image registration problem.
//
// \index{itk::Image!Instantiation}
// \index{itk::Image!Header}
//
// A registration method requires the following set of components: two input
// images, a transform, a metric, an interpolator and an optimizer. Some of
// these components are parametrized by the image type for which the
// registration is intended. The following header files provide declarations
// for common types of these components.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkOrientedImage.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile [differenceImage]" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The types of each one of the components in the registration methods should
// be instantiated. First, we select the image dimension and the type for
// representing image pixels.
//
// Software Guide : EndLatex
//
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 2;
typedef float PixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of the input images are instantiated by the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::OrientedImage< PixelType, Dimension > FixedImageType;
typedef itk::OrientedImage< PixelType, Dimension > MovingImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The transform that will map one image space into the other is defined
// below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::TranslationTransform< double, Dimension > TransformType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// An optimizer is required to explore the parameter space of the transform
// in search of optimal values of the metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The metric will compare how well the two images match each other. Metric
// types are usually parametrized by the image types as can be seen in the
// following type declaration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the type of the interpolator is declared. The interpolator will
// evaluate the moving image at non-grid positions.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration method type is instantiated using the types of the
// fixed and moving images. This class is responsible for interconnecting
// all the components we have described so far.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each one of the registration components is created using its
// \code{New()} method and is assigned to its respective
// \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each component is now connected to the instance of the registration method.
// \index{itk::RegistrationMethod!SetMetric()}
// \index{itk::RegistrationMethod!SetOptimizer()}
// \index{itk::RegistrationMethod!SetTransform()}
// \index{itk::RegistrationMethod!SetFixedImage()}
// \index{itk::RegistrationMethod!SetMovingImage()}
// \index{itk::RegistrationMethod!SetInterpolator()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// In this example, the fixed and moving images are read from files. This
// requires the \doxygen{ImageRegistrationMethod} to acquire its inputs to
// the output of the readers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration can be restricted to consider only a particular region
// of the fixed image as input to the metric computation. This region is
// defined by the \code{SetFixedImageRegion()} method. You could use this
// feature to reduce the computational time of the registration or to avoid
// unwanted objects present in the image affecting the registration outcome.
// In this example we use the full available content of the image. This
// region is identified by the \code{BufferedRegion} of the fixed image.
// Note that for this region to be valid the reader must first invoke its
// \code{Update()} method.
//
// \index{itk::ImageRegistrationMethod!SetFixedImageRegion()}
// \index{itk::Image!GetBufferedRegion()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The parameters of the transform are initialized by passing them in an
// array. This can be used to setup an initial known correction of the
// misalignment. In this particular case, a translation transform is
// being used for the registration. The array of parameters for this
// transform is simply composed of the translation values along each
// dimension. Setting the values of the parameters to zero
// initializes the transform as an \emph{identity} transform. Note that the
// array constructor requires the number of elements as an argument.
//
// \index{itk::TranslationTransform!GetNumberOfParameters()}
// \index{itk::RegistrationMethod!SetInitialTransformParameters()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef RegistrationType::ParametersType ParametersType;
ParametersType initialParameters( transform->GetNumberOfParameters() );
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
registration->SetInitialTransformParameters( initialParameters );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point the registration method is ready for execution. The
// optimizer is the component that drives the execution of the
// registration. However, the ImageRegistrationMethod class
// orchestrates the ensemble to make sure that everything is in place
// before control is passed to the optimizer.
//
// It is usually desirable to fine tune the parameters of the optimizer.
// Each optimizer has particular parameters that must be interpreted in the
// context of the optimization strategy it implements. The optimizer used in
// this example is a variant of gradient descent that attempts to prevent it
// from taking steps which are too large. At each iteration, this optimizer
// will take a step along the direction of the \doxygen{ImageToImageMetric}
// derivative. The initial length of the step is defined by the user. Each
// time the direction of the derivative abruptly changes, the optimizer
// assumes that a local extrema has been passed and reacts by reducing the
// step length by a half. After several reductions of the step length, the
// optimizer may be moving in a very restricted area of the transform
// parameter space. The user can define how small the step length should be
// to consider convergence to have been reached. This is equivalent to defining
// the precision with which the final transform should be known.
//
// The initial step length is defined with the method
// \code{SetMaximumStepLength()}, while the tolerance for convergence is
// defined with the method \code{SetMinimumStepLength()}.
//
// \index{itk::Regular\-Setp\-Gradient\-Descent\-Optimizer!SetMaximumStepLength()}
// \index{itk::Regular\-Step\-Gradient\-Descent\-Optimizer!SetMinimumStepLength()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetMaximumStepLength( 4.00 );
optimizer->SetMinimumStepLength( 0.01 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case where the optimizer never succeeds in reaching the desired
// precision tolerance, it is prudent to establish a limit on the number of
// iterations to be performed. This maximum number is defined with the
// method \code{SetNumberOfIterations()}.
//
// \index{itk::Regular\-Setp\-Gradient\-Descent\-Optimizer!SetNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetNumberOfIterations( 200 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration process is triggered by an invocation of the
// \code{Update()} method. If something goes wrong during the
// initialization or execution of the registration an exception will be
// thrown. We should therefore place the \code{Update()} method
// in a \code{try/catch} block as illustrated in the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
registration->Update();
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a real application, you may attempt to recover from the error in the
// catch block. Here we are simply printing out a message and then
// terminating the execution of the program.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The result of the registration process is an array of parameters that
// defines the spatial transformation in an unique way. This final result is
// obtained using the \code{GetLastTransformParameters()} method.
//
// \index{itk::RegistrationMethod!GetLastTransformParameters()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ParametersType finalParameters = registration->GetLastTransformParameters();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case of the \doxygen{TranslationTransform}, there is a
// straightforward interpretation of the parameters. Each element of the
// array corresponds to a translation along one spatial dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The optimizer can be queried for the actual number of iterations
// performed to reach convergence. The \code{GetCurrentIteration()}
// method returns this value. A large number of iterations may be an
// indication that the maximum step length has been set too small, which
// is undesirable since it results in long computational times.
//
// \index{itk::Regular\-Setp\-Gradient\-Descent\-Optimizer!GetCurrentIteration()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The value of the image metric corresponding to the last set of parameters
// can be obtained with the \code{GetValue()} method of the optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double bestValue = optimizer->GetValue();
// Software Guide : EndCodeSnippet
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over two of the images provided in
// \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// The second image is the result of intentionally translating the first
// image by $(13,17)$ millimeters. Both images have unit-spacing and
// are shown in Figure \ref{fig:FixedMovingImageRegistration1}. The
// registration takes 18 iterations and the resulting transform parameters are:
//
// \begin{verbatim}
// Translation X = 12.9903
// Translation Y = 17.0001
// \end{verbatim}
//
// As expected, these values match the misalignment
// intentionally introduced in the moving image quite well.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20.eps}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceShifted13x17y.eps}
// \itkcaption[Fixed and Moving images in registration framework]{Fixed and
// Moving image provided as input to the registration method.}
// \label{fig:FixedMovingImageRegistration1}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// It is common, as the last step of a registration task, to use the
// resulting transform to map the moving image into the fixed image space.
// This is easily done with the \doxygen{ResampleImageFilter}. Please
// refer to Section~\ref{sec:ResampleImageFilter} for details on the use
// of this filter. First, a ResampleImageFilter type is instantiated
// using the image types. It is convenient to use the fixed image type as
// the output type since it is likely that the transformed moving image
// will be compared with the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A resampling filter is created and the corresponding transform and
// moving image connected as inputs.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetInput( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Transform that is produced as output of the Registration method is
// now passed as input to the resampling filter.
//
// \index{itk::ImageRegistrationMethod!Resampling image}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resample->SetTransform( registration->GetOutput()->Get() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As described in Section \ref{sec:ResampleImageFilter}, the
// ResampleImageFilter requires additional parameters to be
// specified, in particular, the spacing, origin and size of the output
// image. The default pixel value is also set to a distinct gray level in
// order to make the regions that are outside of the mapped image visible.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration1Output.eps}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceBefore.eps}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceAfter.eps}
// \itkcaption[HelloWorld registration output images]{Mapped moving image and its
// difference with the fixed image before and after registration}
// \label{fig:ImageRegistration1Output}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The output of the filter is passed to a writer that will store the
// image in a file. An \doxygen{CastImageFilter} is used to convert the
// pixel type of the resampled image to the final type used by the
// writer. The cast and writer filters are instantiated below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::OrientedImage< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are created by invoking their \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
// Software Guide : EndCodeSnippet
writer->SetFileName( argv[3] );
// Software Guide : BeginLatex
//
// The \code{Update()} method of the writer is invoked in order to trigger
// the execution of the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ImageRegistration1Pipeline.eps}
// \itkcaption[Pipeline structure of the registration example]{Pipeline
// structure of the registration example.}
// \label{fig:ImageRegistration1Pipeline}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The fixed image and the transformed moving image can easily be compared
// using the \code{SquaredDifferenceImageFilter}. This pixel-wise
// filter computes the squared value of the difference between homologous
// pixels of its input images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::SquaredDifferenceImageFilter<
FixedImageType,
FixedImageType,
OutputImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Its output can be passed to another writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( difference->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The complete pipeline structure of the current example is presented in
// Figure~\ref{fig:ImageRegistration1Pipeline}. The components of the
// registration method are depicted as well. Figure
// \ref{fig:ImageRegistration1Output} (left) shows the result of resampling
// the moving image in order to map it onto the fixed image space. The top
// and right borders of the image appear in the gray level selected with the
// \code{SetDefaultPixelValue()} in the ResampleImageFilter. The
// center image shows the squared difference between the fixed image and
// the moving image. The right image shows the squared difference between
// the fixed image and the transformed moving image. Both difference images
// are displayed negated in order to accentuate those pixels where differences
// exist.
//
// Software Guide : EndLatex
if( argc >= 5 )
{
writer2->SetFileName( argv[4] );
writer2->Update();
}
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceTranslations.eps}
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceMetric.eps}
// \itkcaption[Trace of translations and metrics during registration]{The sequence
// of translations and metric values at each iteration of the optimizer.}
// \label{fig:ImageRegistration1Trace}
// \end{figure}
//
// It is always useful to keep in mind that registration is essentially an
// optimization problem. Figure \ref{fig:ImageRegistration1Trace} helps to
// reinforce this notion by showing the trace of translations and values
// of the image metric at each iteration of the optimizer. It can be seen
// from the top figure that the step length is progressively reduced as
// the optimizer gets closer to the metric extrema. The bottom plot
// clearly shows how the metric value decreases as the optimization
// advances. The log plot helps to hightlight the normal oscilations of
// the optimizer around the extrema value.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|