File: ImageRegistration1o.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (698 lines) | stat: -rw-r--r-- 25,631 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: ImageRegistration1o.cxx,v $
  Language:  C++
  Date:      $Date: 2007-11-22 00:30:16 $
  Version:   $Revision: 1.4 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif




// Software Guide : BeginLatex
//
// This example illustrates the use of the image registration framework in
// Insight.  It should be read as a "Hello World" for ITK
// registration. Which means that for now you don't ask "why?". Instead,
// use the example as an introduction to the typical elements involved in
// solving an image registration problem.
//
// \index{itk::Image!Instantiation}
// \index{itk::Image!Header}
//
// A registration method requires the following set of components: two input
// images, a transform, a metric, an interpolator and an optimizer. Some of
// these components are parametrized by the image type for which the
// registration is intended.  The following header files provide declarations
// for common types of these components.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkOrientedImage.h"
// Software Guide : EndCodeSnippet


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"


int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile ";
    std::cerr << "outputImagefile [differenceImage]" << std::endl;
    return EXIT_FAILURE;
    }
  
  // Software Guide : BeginLatex
  // 
  // The types of each one of the components in the registration methods should
  // be instantiated. First, we select the image dimension and the type for
  // representing image pixels.
  //
  // Software Guide : EndLatex 
  //
  // Software Guide : BeginCodeSnippet 
  const    unsigned int    Dimension = 2;
  typedef  float           PixelType;
  // Software Guide : EndCodeSnippet

  
  //  Software Guide : BeginLatex
  //  
  //  The types of the input images are instantiated by the following lines.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::OrientedImage< PixelType, Dimension >  FixedImageType;
  typedef itk::OrientedImage< PixelType, Dimension >  MovingImageType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The transform that will map one image space into the other is defined
  //  below.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::TranslationTransform< double, Dimension > TransformType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  An optimizer is required to explore the parameter space of the transform
  //  in search of optimal values of the metric.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::RegularStepGradientDescentOptimizer       OptimizerType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The metric will compare how well the two images match each other. Metric
  //  types are usually parametrized by the image types as can be seen in the
  //  following type declaration.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::MeanSquaresImageToImageMetric< 
                                    FixedImageType, 
                                    MovingImageType >    MetricType;
  // Software Guide : EndCodeSnippet



  //  Software Guide : BeginLatex
  //  
  //  Finally, the type of the interpolator is declared. The interpolator will
  //  evaluate the moving image at non-grid positions.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk:: LinearInterpolateImageFunction< 
                                    MovingImageType,
                                    double          >    InterpolatorType;
  // Software Guide : EndCodeSnippet 


  //  Software Guide : BeginLatex
  //
  //  The registration method type is instantiated using the types of the
  //  fixed and moving images. This class is responsible for interconnecting
  //  all the components we have described so far.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::ImageRegistrationMethod< 
                                    FixedImageType, 
                                    MovingImageType >    RegistrationType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Each one of the registration components is created using its
  //  \code{New()} method and is assigned to its respective 
  //  \doxygen{SmartPointer}.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  MetricType::Pointer         metric        = MetricType::New();
  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();
  // Software Guide : EndCodeSnippet
  

  //  Software Guide : BeginLatex
  //
  //  Each component is now connected to the instance of the registration method.
  //  \index{itk::RegistrationMethod!SetMetric()}
  //  \index{itk::RegistrationMethod!SetOptimizer()}
  //  \index{itk::RegistrationMethod!SetTransform()}
  //  \index{itk::RegistrationMethod!SetFixedImage()}
  //  \index{itk::RegistrationMethod!SetMovingImage()}
  //  \index{itk::RegistrationMethod!SetInterpolator()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  registration->SetMetric(        metric        );
  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetInterpolator(  interpolator  );
  // Software Guide : EndCodeSnippet


  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );


  //  Software Guide : BeginLatex
  //  
  //  In this example, the fixed and moving images are read from files. This
  //  requires the \doxygen{ImageRegistrationMethod} to acquire its inputs to
  //  the output of the readers.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  registration->SetFixedImage(    fixedImageReader->GetOutput()    );
  registration->SetMovingImage(   movingImageReader->GetOutput()   );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The registration can be restricted to consider only a particular region
  //  of the fixed image as input to the metric computation. This region is
  //  defined by the \code{SetFixedImageRegion()} method.  You could use this
  //  feature to reduce the computational time of the registration or to avoid
  //  unwanted objects present in the image affecting the registration outcome.
  //  In this example we use the full available content of the image. This
  //  region is identified by the \code{BufferedRegion} of the fixed image.
  //  Note that for this region to be valid the reader must first invoke its
  //  \code{Update()} method.
  //
  //  \index{itk::ImageRegistrationMethod!SetFixedImageRegion()}
  //  \index{itk::Image!GetBufferedRegion()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  fixedImageReader->Update();
  registration->SetFixedImageRegion( 
     fixedImageReader->GetOutput()->GetBufferedRegion() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The parameters of the transform are initialized by passing them in an
  //  array. This can be used to setup an initial known correction of the
  //  misalignment. In this particular case, a translation transform is
  //  being used for the registration. The array of parameters for this
  //  transform is simply composed of the translation values along each
  //  dimension. Setting the values of the parameters to zero 
  //  initializes the transform as an \emph{identity} transform. Note that the
  //  array constructor requires the number of elements as an argument.
  //
  //  \index{itk::TranslationTransform!GetNumberOfParameters()}
  //  \index{itk::RegistrationMethod!SetInitialTransformParameters()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef RegistrationType::ParametersType ParametersType;
  ParametersType initialParameters( transform->GetNumberOfParameters() );

  initialParameters[0] = 0.0;  // Initial offset in mm along X
  initialParameters[1] = 0.0;  // Initial offset in mm along Y
  
  registration->SetInitialTransformParameters( initialParameters );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  At this point the registration method is ready for execution. The
  //  optimizer is the component that drives the execution of the
  //  registration.  However, the ImageRegistrationMethod class
  //  orchestrates the ensemble to make sure that everything is in place
  //  before control is passed to the optimizer.
  //
  //  It is usually desirable to fine tune the parameters of the optimizer.
  //  Each optimizer has particular parameters that must be interpreted in the
  //  context of the optimization strategy it implements. The optimizer used in
  //  this example is a variant of gradient descent that attempts to prevent it
  //  from taking steps which are too large.  At each iteration, this optimizer
  //  will take a step along the direction of the \doxygen{ImageToImageMetric}
  //  derivative. The initial length of the step is defined by the user. Each
  //  time the direction of the derivative abruptly changes, the optimizer
  //  assumes that a local extrema has been passed and reacts by reducing the
  //  step length by a half. After several reductions of the step length, the
  //  optimizer may be moving in a very restricted area of the transform
  //  parameter space. The user can define how small the step length should be
  //  to consider convergence to have been reached. This is equivalent to defining
  //  the precision with which the final transform should be known.
  //
  //  The initial step length is defined with the method
  //  \code{SetMaximumStepLength()}, while the tolerance for convergence is
  //  defined with the method \code{SetMinimumStepLength()}.
  //
  //  \index{itk::Regular\-Setp\-Gradient\-Descent\-Optimizer!SetMaximumStepLength()}
  //  \index{itk::Regular\-Step\-Gradient\-Descent\-Optimizer!SetMinimumStepLength()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  optimizer->SetMaximumStepLength( 4.00 );  
  optimizer->SetMinimumStepLength( 0.01 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  In the case where the optimizer never succeeds in reaching the desired
  //  precision tolerance, it is prudent to establish a limit on the number of
  //  iterations to be performed. This maximum number is defined with the
  //  method \code{SetNumberOfIterations()}.
  //
  //  \index{itk::Regular\-Setp\-Gradient\-Descent\-Optimizer!SetNumberOfIterations()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  optimizer->SetNumberOfIterations( 200 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The registration process is triggered by an invocation of the
  //  \code{Update()} method. If something goes wrong during the
  //  initialization or execution of the registration an exception will be
  //  thrown. We should therefore place the \code{Update()} method
  //  in a \code{try/catch} block as illustrated in the following lines.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  try 
    { 
    registration->Update(); 
    } 
  catch( itk::ExceptionObject & err ) 
    { 
    std::cout << "ExceptionObject caught !" << std::endl; 
    std::cout << err << std::endl; 
    return EXIT_FAILURE;
    } 
  // Software Guide : EndCodeSnippet

  
  //  Software Guide : BeginLatex
  //  
  // In a real application, you may attempt to recover from the error in the
  // catch block. Here we are simply printing out a message and then
  // terminating the execution of the program.
  //
  //  Software Guide : EndLatex 

  //  Software Guide : BeginLatex
  //  
  //  The result of the registration process is an array of parameters that
  //  defines the spatial transformation in an unique way. This final result is
  //  obtained using the \code{GetLastTransformParameters()} method.
  //
  //  \index{itk::RegistrationMethod!GetLastTransformParameters()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  ParametersType finalParameters = registration->GetLastTransformParameters();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  In the case of the \doxygen{TranslationTransform}, there is a
  //  straightforward interpretation of the parameters.  Each element of the
  //  array corresponds to a translation along one spatial dimension.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  const double TranslationAlongX = finalParameters[0];
  const double TranslationAlongY = finalParameters[1];
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The optimizer can be queried for the actual number of iterations
  //  performed to reach convergence.  The \code{GetCurrentIteration()}
  //  method returns this value. A large number of iterations may be an
  //  indication that the maximum step length has been set too small, which
  //  is undesirable since it results in long computational times.
  //
  //  \index{itk::Regular\-Setp\-Gradient\-Descent\-Optimizer!GetCurrentIteration()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
  // Software Guide : EndCodeSnippet

  //  Software Guide : BeginLatex
  //  
  //  The value of the image metric corresponding to the last set of parameters
  //  can be obtained with the \code{GetValue()} method of the optimizer.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  const double bestValue = optimizer->GetValue();
  // Software Guide : EndCodeSnippet


  // Print out results
  //
  std::cout << "Result = " << std::endl;
  std::cout << " Translation X = " << TranslationAlongX  << std::endl;
  std::cout << " Translation Y = " << TranslationAlongY  << std::endl;
  std::cout << " Iterations    = " << numberOfIterations << std::endl;
  std::cout << " Metric value  = " << bestValue          << std::endl;


  //  Software Guide : BeginLatex
  //  
  //  Let's execute this example over two of the images provided in
  //  \code{Examples/Data}:
  //  
  //  \begin{itemize}
  //  \item \code{BrainProtonDensitySliceBorder20.png} 
  //  \item \code{BrainProtonDensitySliceShifted13x17y.png}
  //  \end{itemize}
  //
  //  The second image is the result of intentionally translating the first
  //  image by $(13,17)$ millimeters. Both images have unit-spacing and
  //  are shown in Figure \ref{fig:FixedMovingImageRegistration1}. The
  //  registration takes 18 iterations and the resulting transform parameters are:
  //
  //  \begin{verbatim}
  //  Translation X = 12.9903
  //  Translation Y = 17.0001
  //  \end{verbatim}
  // 
  //  As expected, these values match the misalignment
  //  intentionally introduced in the moving image quite well.
  //
  // \begin{figure}
  // \center
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20.eps}
  // \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceShifted13x17y.eps}
  // \itkcaption[Fixed and Moving images in registration framework]{Fixed and
  // Moving image provided as input to the registration method.}
  // \label{fig:FixedMovingImageRegistration1}
  // \end{figure}
  //
  //
  //  Software Guide : EndLatex 


  //  Software Guide : BeginLatex
  //  
  //  It is common, as the last step of a registration task, to use the
  //  resulting transform to map the moving image into the fixed image space.
  //  This is easily done with the \doxygen{ResampleImageFilter}. Please
  //  refer to Section~\ref{sec:ResampleImageFilter} for details on the use
  //  of this filter.  First, a ResampleImageFilter type is instantiated
  //  using the image types. It is convenient to use the fixed image type as
  //  the output type since it is likely that the transformed moving image
  //  will be compared with the fixed image.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::ResampleImageFilter< 
                            MovingImageType, 
                            FixedImageType >    ResampleFilterType;
  // Software Guide : EndCodeSnippet



  //  Software Guide : BeginLatex
  //  
  //  A resampling filter is created and the corresponding transform and
  //  moving image connected as inputs.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  ResampleFilterType::Pointer resample = ResampleFilterType::New();
  resample->SetInput( movingImageReader->GetOutput() );
  // Software Guide : EndCodeSnippet



  //  Software Guide : BeginLatex
  //  
  //  The Transform that is produced as output of the Registration method is
  //  now passed as input to the resampling filter.
  //
  //  \index{itk::ImageRegistrationMethod!Resampling image}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  resample->SetTransform( registration->GetOutput()->Get() );
  // Software Guide : EndCodeSnippet



  //  Software Guide : BeginLatex
  //  
  //  As described in Section \ref{sec:ResampleImageFilter}, the
  //  ResampleImageFilter requires additional parameters to be
  //  specified, in particular, the spacing, origin and size of the output
  //  image. The default pixel value is also set to a distinct gray level in
  //  order to make the regions that are outside of the mapped image visible.  
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
  resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 100 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  // \begin{figure}
  // \center
  // \includegraphics[width=0.32\textwidth]{ImageRegistration1Output.eps}
  // \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceBefore.eps}
  // \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceAfter.eps}
  // \itkcaption[HelloWorld registration output images]{Mapped moving image and its
  // difference with the fixed image before and after registration}
  // \label{fig:ImageRegistration1Output}
  // \end{figure}
  //
  //  Software Guide : EndLatex 


  //  Software Guide : BeginLatex
  //  
  //  The output of the filter is passed to a writer that will store the
  //  image in a file. An \doxygen{CastImageFilter} is used to convert the
  //  pixel type of the resampled image to the final type used by the
  //  writer. The cast and writer filters are instantiated below.
  //
  //  Software Guide : EndLatex 
  
  // Software Guide : BeginCodeSnippet
  typedef unsigned char  OutputPixelType;
  typedef itk::OrientedImage< OutputPixelType, Dimension > OutputImageType;
  typedef itk::CastImageFilter< 
                        FixedImageType,
                        OutputImageType > CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The filters are created by invoking their \code{New()}
  //  method.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();
  // Software Guide : EndCodeSnippet


  writer->SetFileName( argv[3] );


  //  Software Guide : BeginLatex
  //
  //  The \code{Update()} method of the writer is invoked in order to trigger
  //  the execution of the pipeline.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput()   );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  // \begin{figure}
  // \center
  // \includegraphics[width=\textwidth]{ImageRegistration1Pipeline.eps}
  // \itkcaption[Pipeline structure of the registration example]{Pipeline
  // structure of the registration example.}
  // \label{fig:ImageRegistration1Pipeline}
  // \end{figure}
  //
  //
  //  Software Guide : EndLatex 


  //  Software Guide : BeginLatex
  //  
  //  The fixed image and the transformed moving image can easily be compared
  //  using the \code{SquaredDifferenceImageFilter}. This pixel-wise
  //  filter computes the squared value of the difference between homologous
  //  pixels of its input images.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::SquaredDifferenceImageFilter< 
                                  FixedImageType, 
                                  FixedImageType, 
                                  OutputImageType > DifferenceFilterType;

  DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
  difference->SetInput1( fixedImageReader->GetOutput() );
  difference->SetInput2( resample->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  Its output can be passed to another writer.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  WriterType::Pointer writer2 = WriterType::New();
  writer2->SetInput( difference->GetOutput() );  
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The complete pipeline structure of the current example is presented in
  //  Figure~\ref{fig:ImageRegistration1Pipeline}.  The components of the
  //  registration method are depicted as well.  Figure
  //  \ref{fig:ImageRegistration1Output} (left) shows the result of resampling
  //  the moving image in order to map it onto the fixed image space. The top
  //  and right borders of the image appear in the gray level selected with the
  //  \code{SetDefaultPixelValue()} in the ResampleImageFilter. The
  //  center image shows the squared difference between the fixed image and
  //  the moving image. The right image shows the squared difference between
  //  the fixed image and the transformed moving image.  Both difference images
  //  are displayed negated in order to accentuate those pixels where differences
  //  exist. 
  //
  //  Software Guide : EndLatex 


  if( argc >= 5 )
    {
    writer2->SetFileName( argv[4] );
    writer2->Update();
    }

  //  Software Guide : BeginLatex
  //  
  // \begin{figure}
  // \center
  // \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceTranslations.eps}
  // \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceMetric.eps}
  // \itkcaption[Trace of translations and metrics during registration]{The sequence
  // of translations and metric values at each iteration of the optimizer.}
  // \label{fig:ImageRegistration1Trace}
  // \end{figure}
  //
  //  It is always useful to keep in mind that registration is essentially an
  //  optimization problem. Figure \ref{fig:ImageRegistration1Trace} helps to
  //  reinforce this notion by showing the trace of translations and values
  //  of the image metric at each iteration of the optimizer. It can be seen
  //  from the top figure that the step length is progressively reduced as
  //  the optimizer gets closer to the metric extrema. The bottom plot
  //  clearly shows how the metric value decreases as the optimization
  //  advances. The log plot helps to hightlight the normal oscilations of
  //  the optimizer around the extrema value.
  //
  //  Software Guide : EndLatex 


  return EXIT_SUCCESS;
}