File: ImageRegistration4o.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (386 lines) | stat: -rw-r--r-- 14,590 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: ImageRegistration4o.cxx,v $
  Language:  C++
  Date:      $Date: 2009-06-24 12:09:09 $
  Version:   $Revision: 1.9 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

// Software Guide : BeginLatex
//
// In this example, we will solve a simple multi-modality problem using
// another implementation of mutual information. One of the main differences
// between \doxygen{MattesMutualInformationImageToImageMetric} and
// \doxygen{MutualInformationImageToImageMetric} is that only one spatial
// sample set is used for the whole registration process instead of using new
// samples every iteration. The use of a single sample set results in a much
// smoother cost function and hence allows the use of more intelligent
// optimizers. In this example, we will use the 
// RegularStepGradientDescentOptimizer.  Another noticeable
// difference is that pre-normalization of the images is not necessary as the
// metric rescales internally when building up the discrete density
// functions.  Other differences between the two mutual information
// implementations are described in detail in Section
// \ref{sec:MutualInformationMetric}. 
//
// First, we include the header files of the components used in this example.
//
// \index{itk::ImageRegistrationMethod!Multi-Modality}
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkOrientedImage.h"
// Software Guide : EndCodeSnippet


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"


//  The following section of code implements a Command observer
//  used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command 
{
public:
  typedef  CommandIterationUpdate   Self;
  typedef  itk::Command             Superclass;
  typedef itk::SmartPointer<Self>   Pointer;
  itkNewMacro( Self );
protected:
  CommandIterationUpdate() {};
public:
  typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
  typedef   const OptimizerType *                  OptimizerPointer;

  void Execute(itk::Object *caller, const itk::EventObject & event)
    {
    Execute( (const itk::Object *)caller, event);
    }

  void Execute(const itk::Object * object, const itk::EventObject & event)
    {
    OptimizerPointer optimizer = 
      dynamic_cast< OptimizerPointer >( object );
    if( ! itk::IterationEvent().CheckEvent( &event ) )
      {
      return;
      }
    std::cout << optimizer->GetCurrentIteration() << "   ";
    std::cout << optimizer->GetValue() << "   ";
    std::cout << optimizer->GetCurrentPosition() << std::endl;
    }
};


int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile ";
    std::cerr << "outputImagefile [defaultPixelValue]" << std::endl;
    return EXIT_FAILURE;
    }
  
  const    unsigned int    Dimension = 2;
  typedef  unsigned short  PixelType;
  
  typedef itk::OrientedImage< PixelType, Dimension >  FixedImageType;
  typedef itk::OrientedImage< PixelType, Dimension >  MovingImageType;

  typedef itk::TranslationTransform< double, Dimension > TransformType;
  typedef itk::RegularStepGradientDescentOptimizer       OptimizerType;
  typedef itk::LinearInterpolateImageFunction< 
                                    MovingImageType,
                                    double             > InterpolatorType;
  typedef itk::ImageRegistrationMethod< 
                                    FixedImageType, 
                                    MovingImageType    > RegistrationType;

  //  Software Guide : BeginLatex
  //  
  //  In this example the image types and all registration components,
  //  except the metric, are declared as in Section 
  //  \ref{sec:IntroductionImageRegistration}.
  //  The Mattes mutual information metric type is 
  //  instantiated using the image types.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::MattesMutualInformationImageToImageMetric< 
                                          FixedImageType, 
                                          MovingImageType >    MetricType;
  // Software Guide : EndCodeSnippet

  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetInterpolator(  interpolator  );
  

  //  Software Guide : BeginLatex
  //  
  //  The metric is created using the \code{New()} method and then
  //  connected to the registration object.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  MetricType::Pointer metric = MetricType::New();
  registration->SetMetric( metric  );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The metric requires two parameters to be selected: the number
  //  of bins used to compute the entropy and the number of spatial samples
  //  used to compute the density estimates. In typical application, 50 
  //  histogram bins are sufficient and the metric is relatively insensitive
  //  to changes in the number of bins. The number of spatial samples
  //  to be used depends on the content of the image. If the images are
  //  smooth and do not contain much detail, then using approximately
  //  $1$ percent of the pixels will do. On the other hand, if the images
  //  are detailed, it may be necessary to use a much higher proportion,
  //  such as $20$ percent.
  //
  //  \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfHistogramBins()}
  //  \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfSpatialSamples()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  metric->SetNumberOfHistogramBins( 24 );
  metric->SetNumberOfSpatialSamples( 10000 );
  // Software Guide : EndCodeSnippet

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );

  registration->SetFixedImage(    fixedImageReader->GetOutput()    );
  registration->SetMovingImage(   movingImageReader->GetOutput()   );

  fixedImageReader->Update();

  registration->SetFixedImageRegion( 
       fixedImageReader->GetOutput()->GetBufferedRegion() );


  typedef RegistrationType::ParametersType ParametersType;
  ParametersType initialParameters( transform->GetNumberOfParameters() );

  initialParameters[0] = 0.0;  // Initial offset in mm along X
  initialParameters[1] = 0.0;  // Initial offset in mm along Y
  
  registration->SetInitialTransformParameters( initialParameters );


  //  Software Guide : BeginLatex
  //  
  //  Another significant difference in the metric is that it
  //  computes the negative mutual information and hence we
  //  need to minimize the cost function in this case. In this
  //  example we will use the same optimization parameters as in
  //  Section \ref{sec:IntroductionImageRegistration}.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  optimizer->MinimizeOn();
  optimizer->SetMaximumStepLength( 2.00 );  
  optimizer->SetMinimumStepLength( 0.001 );
  optimizer->SetNumberOfIterations( 200 );
  optimizer->SetRelaxationFactor( 0.8 );
  // Software Guide : EndCodeSnippet


  // Create the Command observer and register it with the optimizer.
  //
  CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
  optimizer->AddObserver( itk::IterationEvent(), observer );


  try 
    { 
    registration->StartRegistration(); 
    std::cout << "Optimizer stop condition: "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
    } 
  catch( itk::ExceptionObject & err ) 
    { 
    std::cerr << "ExceptionObject caught !" << std::endl; 
    std::cerr << err << std::endl; 
    return EXIT_FAILURE;
    } 

  ParametersType finalParameters = registration->GetLastTransformParameters();
  
  double TranslationAlongX = finalParameters[0];
  double TranslationAlongY = finalParameters[1];
  
  // For stability reasons it may be desirable to round up the values of translation
  // 
  unsigned int numberOfIterations = optimizer->GetCurrentIteration();
  
  double bestValue = optimizer->GetValue();


  // Print out results
  //
  std::cout << "Result = " << std::endl;
  std::cout << " Translation X = " << TranslationAlongX  << std::endl;
  std::cout << " Translation Y = " << TranslationAlongY  << std::endl;
  std::cout << " Iterations    = " << numberOfIterations << std::endl;
  std::cout << " Metric value  = " << bestValue          << std::endl;
  std::cout << " Stop Condition  = " << optimizer->GetStopCondition() << std::endl;


  //  Software Guide : BeginLatex
  //  
  //  This example is executed using the same multi-modality images as
  //  in the previous one.  The registration converges after $24$ iterations and produces
  //  the following results:
  //
  //  \begin{verbatim}
  //  Translation X = 13.1719
  //  Translation Y = 16.9006
  //  \end{verbatim}
  //  These values are a very close match to 
  //  the true misaligment introduced in the moving image.
  //
  //  Software Guide : EndLatex 


  typedef itk::ResampleImageFilter< 
                            MovingImageType, 
                            FixedImageType >    ResampleFilterType;

  TransformType::Pointer finalTransform = TransformType::New();

  finalTransform->SetParameters( finalParameters );
  finalTransform->SetFixedParameters( transform->GetFixedParameters() );

  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  resample->SetTransform( finalTransform );
  resample->SetInput( movingImageReader->GetOutput() );

  FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

  PixelType defaultPixelValue = 100;

  if( argc > 4 )
    {
    defaultPixelValue = atoi( argv[4] );
    }
  
  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( defaultPixelValue );


  typedef  unsigned char                                   OutputPixelType;
  typedef itk::OrientedImage< OutputPixelType, Dimension > OutputImageType;
  typedef itk::CastImageFilter< 
                        FixedImageType,
                        OutputImageType >                  CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >          WriterType;

  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();

  writer->SetFileName( argv[3] );

  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput()   );
  writer->Update();


  //  Software Guide : BeginLatex
  // 
  // \begin{figure}
  // \center
  // \includegraphics[width=0.32\textwidth]{ImageRegistration4Output.eps}
  // \includegraphics[width=0.32\textwidth]{ImageRegistration4CheckerboardBefore.eps}
  // \includegraphics[width=0.32\textwidth]{ImageRegistration4CheckerboardAfter.eps}
  // \itkcaption[MattesMutualInformationImageToImageMetric output images]{The mapped
  // moving image (left) and the composition of fixed and moving images before
  // (center) and after (right) registration with Mattes mutual information.}
  // \label{fig:ImageRegistration4Output}
  // \end{figure}
  //
  //  The result of resampling the moving image is presented at the top
  //  of Figure \ref{fig:ImageRegistration4Output}. The center and right
  //  parts of the figure present a checkerboard composite of the fixed and
  //  moving images before and after registration.
  //
  //  Software Guide : EndLatex 

  //  Software Guide : BeginLatex
  //  
  // \begin{figure}
  // \center
  // \includegraphics[height=0.44\textwidth]{ImageRegistration4TraceTranslations.eps}
  // \includegraphics[height=0.44\textwidth]{ImageRegistration4TraceMetric.eps}
  // \itkcaption[MattesMutualInformationImageToImageMetric output plots]{Sequence
  // of translations and metric values at each iteration of the optimizer.}
  // \label{fig:ImageRegistration4TraceTranslations}
  // \end{figure}
  //
  //  Figure \ref{fig:ImageRegistration4TraceTranslations} (top) shows the
  //  sequence of translations followed by the optimizer as it searched the
  //  parameter space. The bottom of the same figure shows the sequence
  //  of metric values computed as the optimizer searched the parameter
  //  space.  Comparing these trace plots with Figures
  //  \ref{fig:ImageRegistration2TraceTranslations} and
  //  \ref{fig:ImageRegistration2TraceMetric}, we can see that the measures
  //  produced by MattesMutualInformationImageToImageMetric are
  //  smoother than those of
  //  the MutualInformationImageToImageMetric. This smoothness allows
  //  the use of more sophisticated optimizers such as the
  //  \doxygen{RegularStepGradientDescentOptimizer} which efficiently locks
  //  onto the optimal value.
  //
  //
  //  Software Guide : EndLatex 

  return EXIT_SUCCESS;
}