1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: $RCSfile: ImageRegistration4o.cxx,v $
Language: C++
Date: $Date: 2009-06-24 12:09:09 $
Version: $Revision: 1.9 $
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Software Guide : BeginLatex
//
// In this example, we will solve a simple multi-modality problem using
// another implementation of mutual information. One of the main differences
// between \doxygen{MattesMutualInformationImageToImageMetric} and
// \doxygen{MutualInformationImageToImageMetric} is that only one spatial
// sample set is used for the whole registration process instead of using new
// samples every iteration. The use of a single sample set results in a much
// smoother cost function and hence allows the use of more intelligent
// optimizers. In this example, we will use the
// RegularStepGradientDescentOptimizer. Another noticeable
// difference is that pre-normalization of the images is not necessary as the
// metric rescales internally when building up the discrete density
// functions. Other differences between the two mutual information
// implementations are described in detail in Section
// \ref{sec:MutualInformationMetric}.
//
// First, we include the header files of the components used in this example.
//
// \index{itk::ImageRegistrationMethod!Multi-Modality}
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetric.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkOrientedImage.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event)
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event)
{
OptimizerPointer optimizer =
dynamic_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile [defaultPixelValue]" << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef unsigned short PixelType;
typedef itk::OrientedImage< PixelType, Dimension > FixedImageType;
typedef itk::OrientedImage< PixelType, Dimension > MovingImageType;
typedef itk::TranslationTransform< double, Dimension > TransformType;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
// Software Guide : BeginLatex
//
// In this example the image types and all registration components,
// except the metric, are declared as in Section
// \ref{sec:IntroductionImageRegistration}.
// The Mattes mutual information metric type is
// instantiated using the image types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::MattesMutualInformationImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
// Software Guide : EndCodeSnippet
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// The metric is created using the \code{New()} method and then
// connected to the registration object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType::Pointer metric = MetricType::New();
registration->SetMetric( metric );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The metric requires two parameters to be selected: the number
// of bins used to compute the entropy and the number of spatial samples
// used to compute the density estimates. In typical application, 50
// histogram bins are sufficient and the metric is relatively insensitive
// to changes in the number of bins. The number of spatial samples
// to be used depends on the content of the image. If the images are
// smooth and do not contain much detail, then using approximately
// $1$ percent of the pixels will do. On the other hand, if the images
// are detailed, it may be necessary to use a much higher proportion,
// such as $20$ percent.
//
// \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfHistogramBins()}
// \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfSpatialSamples()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetNumberOfHistogramBins( 24 );
metric->SetNumberOfSpatialSamples( 10000 );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
typedef RegistrationType::ParametersType ParametersType;
ParametersType initialParameters( transform->GetNumberOfParameters() );
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
registration->SetInitialTransformParameters( initialParameters );
// Software Guide : BeginLatex
//
// Another significant difference in the metric is that it
// computes the negative mutual information and hence we
// need to minimize the cost function in this case. In this
// example we will use the same optimization parameters as in
// Section \ref{sec:IntroductionImageRegistration}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->MinimizeOn();
optimizer->SetMaximumStepLength( 2.00 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetNumberOfIterations( 200 );
optimizer->SetRelaxationFactor( 0.8 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->StartRegistration();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
double TranslationAlongX = finalParameters[0];
double TranslationAlongY = finalParameters[1];
// For stability reasons it may be desirable to round up the values of translation
//
unsigned int numberOfIterations = optimizer->GetCurrentIteration();
double bestValue = optimizer->GetValue();
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
std::cout << " Stop Condition = " << optimizer->GetStopCondition() << std::endl;
// Software Guide : BeginLatex
//
// This example is executed using the same multi-modality images as
// in the previous one. The registration converges after $24$ iterations and produces
// the following results:
//
// \begin{verbatim}
// Translation X = 13.1719
// Translation Y = 16.9006
// \end{verbatim}
// These values are a very close match to
// the true misaligment introduced in the moving image.
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
PixelType defaultPixelValue = 100;
if( argc > 4 )
{
defaultPixelValue = atoi( argv[4] );
}
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( defaultPixelValue );
typedef unsigned char OutputPixelType;
typedef itk::OrientedImage< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration4Output.eps}
// \includegraphics[width=0.32\textwidth]{ImageRegistration4CheckerboardBefore.eps}
// \includegraphics[width=0.32\textwidth]{ImageRegistration4CheckerboardAfter.eps}
// \itkcaption[MattesMutualInformationImageToImageMetric output images]{The mapped
// moving image (left) and the composition of fixed and moving images before
// (center) and after (right) registration with Mattes mutual information.}
// \label{fig:ImageRegistration4Output}
// \end{figure}
//
// The result of resampling the moving image is presented at the top
// of Figure \ref{fig:ImageRegistration4Output}. The center and right
// parts of the figure present a checkerboard composite of the fixed and
// moving images before and after registration.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.44\textwidth]{ImageRegistration4TraceTranslations.eps}
// \includegraphics[height=0.44\textwidth]{ImageRegistration4TraceMetric.eps}
// \itkcaption[MattesMutualInformationImageToImageMetric output plots]{Sequence
// of translations and metric values at each iteration of the optimizer.}
// \label{fig:ImageRegistration4TraceTranslations}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration4TraceTranslations} (top) shows the
// sequence of translations followed by the optimizer as it searched the
// parameter space. The bottom of the same figure shows the sequence
// of metric values computed as the optimizer searched the parameter
// space. Comparing these trace plots with Figures
// \ref{fig:ImageRegistration2TraceTranslations} and
// \ref{fig:ImageRegistration2TraceMetric}, we can see that the measures
// produced by MattesMutualInformationImageToImageMetric are
// smoother than those of
// the MutualInformationImageToImageMetric. This smoothness allows
// the use of more sophisticated optimizers such as the
// \doxygen{RegularStepGradientDescentOptimizer} which efficiently locks
// onto the optimal value.
//
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|