File: itkGaussianSpatialFunctionTest.cxx

package info (click to toggle)
insighttoolkit 3.18.0-5
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 110,432 kB
  • ctags: 74,559
  • sloc: cpp: 412,627; ansic: 196,210; fortran: 28,000; python: 3,852; tcl: 2,005; sh: 1,186; java: 583; makefile: 458; csh: 220; perl: 193; xml: 20
file content (120 lines) | stat: -rw-r--r-- 3,631 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    $RCSfile: itkGaussianSpatialFunctionTest.cxx,v $
  Language:  C++
  Date:      $Date: 2009-05-11 16:53:47 $
  Version:   $Revision: 1.1 $

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include <stdio.h>

#include "itkGaussianSpatialFunction.h"

int itkGaussianSpatialFunctionTest(int, char* [] )
{
  // Change this parameter (and the positions, below) to work in higher or lower dimensions
  const unsigned int Dimension = 3;

  //---------Create and initialize a spatial function-----------

  typedef itk::GaussianSpatialFunction<double,Dimension> FunctionType;

  typedef FunctionType::ArrayType ArrayType;
  typedef FunctionType::InputType InputType;

  // Create and initialize a new sphere function

  FunctionType::Pointer spatialFunction = FunctionType::New();

  ArrayType mean;
  mean[0]=13;
  mean[1]=17;
  mean[2]=19;
  spatialFunction->SetMean( mean );
  
  // Test the Get macros as well
  ArrayType mean1 = spatialFunction->GetMean();
  // FIXME : verify the return values...

  ArrayType sigma;
  sigma[0]=5;
  sigma[1]=7;
  sigma[2]=9;
  spatialFunction->SetSigma( sigma );
  
  // Test the Get macros as well
  ArrayType sigma1 = spatialFunction->GetSigma();
  // FIXME : verify the return values...

  double scale1 = spatialFunction->GetScale();
  if( vcl_fabs( scale1 - 1.0 ) > vnl_math::eps )
    {
    std::cerr << "Error in initial scale value" << std::endl;
    return EXIT_FAILURE;
    }
 

  bool normalized1 = spatialFunction->GetNormalized();
  if( normalized1 )
    {
    std::cerr << "Error in initial value of normalized" << std::endl;
    return EXIT_FAILURE;
    }
 

  double scale2 = 19.0;
  spatialFunction->SetScale( scale2 );
  if( spatialFunction->GetScale() != scale2 )
    {
    std::cerr << "Error in Set/GetScale()" << std::endl;
    return EXIT_FAILURE;
    }
  
  spatialFunction->SetScale( 1.0 );
  spatialFunction->SetNormalized( true );


  std::cout << "Gaussian spatial function created\n";

  //----------------Test evaluation of funtion------------------

  // We're going to evaluate it at the center of the Gaussian (10,10,10)
  InputType point;
  point[0] = mean[0];
  point[1] = mean[1];
  point[2] = mean[2];

  std::cout << spatialFunction->GetNameOfClass() << std::endl;
  spatialFunction->Print( std::cout );

  double computedValueAtMean = spatialFunction->Evaluate( point );
  std::cout << "Gaussian function value is " << computedValueAtMean << std::endl;

  const double oneDimensionalFactor = vcl_sqrt( 2.0 * vnl_math::pi );
  const double factor = oneDimensionalFactor * oneDimensionalFactor * oneDimensionalFactor;
  double expectedValueAtMean = 1.0 / ( sigma[0]*sigma[1]*sigma[2] * factor );

  std::cout << "expectedValueAtMean = " << expectedValueAtMean << std::endl;
  std::cout << "computed value      = " << computedValueAtMean << std::endl;

  if( vcl_fabs( computedValueAtMean - expectedValueAtMean ) > vnl_math::eps )
    {
    std::cerr << "Error in computation of value at mean" << std::endl;
    return EXIT_FAILURE;
    }


  return EXIT_SUCCESS;
}