1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
|
/* blas/dznrm2.f -- translated by f2c (version 20050501).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "v3p_netlib.h"
/*< DOUBLE PRECISION FUNCTION DZNRM2( N, X, INCX ) >*/
doublereal dznrm2_(integer *n, doublecomplex *x, integer *incx)
{
/* System generated locals */
integer i__1, i__2, i__3;
doublereal ret_val, d__1;
/* Builtin functions */
double d_imag(doublecomplex *), sqrt(doublereal);
/* Local variables */
integer ix;
doublereal ssq, temp, norm, scale;
/* .. Scalar Arguments .. */
/*< INTEGER INCX, N >*/
/* .. Array Arguments .. */
/*< COMPLEX*16 X( * ) >*/
/* .. */
/* DZNRM2 returns the euclidean norm of a vector via the function */
/* name, so that */
/* DZNRM2 := sqrt( conjg( x' )*x ) */
/* -- This version written on 25-October-1982. */
/* Modified on 14-October-1993 to inline the call to ZLASSQ. */
/* Sven Hammarling, Nag Ltd. */
/* .. Parameters .. */
/*< DOUBLE PRECISION ONE , ZERO >*/
/*< PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) >*/
/* .. Local Scalars .. */
/*< INTEGER IX >*/
/*< DOUBLE PRECISION NORM, SCALE, SSQ, TEMP >*/
/* .. Intrinsic Functions .. */
/*< INTRINSIC ABS, DIMAG, DBLE, SQRT >*/
/* .. */
/* .. Executable Statements .. */
/*< IF( N.LT.1 .OR. INCX.LT.1 )THEN >*/
/* Parameter adjustments */
--x;
/* Function Body */
if (*n < 1 || *incx < 1) {
/*< NORM = ZERO >*/
norm = 0.;
/*< ELSE >*/
} else {
/*< SCALE = ZERO >*/
scale = 0.;
/*< SSQ = ONE >*/
ssq = 1.;
/* The following loop is equivalent to this call to the LAPACK */
/* auxiliary routine: */
/* CALL ZLASSQ( N, X, INCX, SCALE, SSQ ) */
/*< DO 10, IX = 1, 1 + ( N - 1 )*INCX, INCX >*/
i__1 = (*n - 1) * *incx + 1;
i__2 = *incx;
for (ix = 1; i__2 < 0 ? ix >= i__1 : ix <= i__1; ix += i__2) {
/*< IF( DBLE( X( IX ) ).NE.ZERO )THEN >*/
i__3 = ix;
if (x[i__3].r != 0.) {
/*< TEMP = ABS( DBLE( X( IX ) ) ) >*/
i__3 = ix;
temp = (d__1 = x[i__3].r, abs(d__1));
/*< IF( SCALE.LT.TEMP )THEN >*/
if (scale < temp) {
/*< SSQ = ONE + SSQ*( SCALE/TEMP )**2 >*/
/* Computing 2nd power */
d__1 = scale / temp;
ssq = ssq * (d__1 * d__1) + 1.;
/*< SCALE = TEMP >*/
scale = temp;
/*< ELSE >*/
} else {
/*< SSQ = SSQ + ( TEMP/SCALE )**2 >*/
/* Computing 2nd power */
d__1 = temp / scale;
ssq += d__1 * d__1;
/*< END IF >*/
}
/*< END IF >*/
}
/*< IF( DIMAG( X( IX ) ).NE.ZERO )THEN >*/
if (d_imag(&x[ix]) != 0.) {
/*< TEMP = ABS( DIMAG( X( IX ) ) ) >*/
temp = (d__1 = d_imag(&x[ix]), abs(d__1));
/*< IF( SCALE.LT.TEMP )THEN >*/
if (scale < temp) {
/*< SSQ = ONE + SSQ*( SCALE/TEMP )**2 >*/
/* Computing 2nd power */
d__1 = scale / temp;
ssq = ssq * (d__1 * d__1) + 1.;
/*< SCALE = TEMP >*/
scale = temp;
/*< ELSE >*/
} else {
/*< SSQ = SSQ + ( TEMP/SCALE )**2 >*/
/* Computing 2nd power */
d__1 = temp / scale;
ssq += d__1 * d__1;
/*< END IF >*/
}
/*< END IF >*/
}
/*< 10 CONTINUE >*/
/* L10: */
}
/*< NORM = SCALE * SQRT( SSQ ) >*/
norm = scale * sqrt(ssq);
/*< END IF >*/
}
/*< DZNRM2 = NORM >*/
ret_val = norm;
/*< RETURN >*/
return ret_val;
/* End of DZNRM2. */
/*< END >*/
} /* dznrm2_ */
#ifdef __cplusplus
}
#endif
|