File: itkFEMElementBase.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (537 lines) | stat: -rw-r--r-- 15,363 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkFEMElementBase.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

// disable debug warnings in MS compiler
#ifdef _MSC_VER
#pragma warning(disable: 4786)
#endif 

#include "itkFEMElementBase.h"
#include "vnl/algo/vnl_svd.h"
#include "vnl/algo/vnl_qr.h"   

namespace itk {
namespace fem {

#ifdef FEM_BUILD_VISUALIZATION

/** Global scale factor for drawing on the DC */
double Element::DC_Scale=1000.0;

/** Global scale factor for drawing on the DC */
double &Element::Node::DC_Scale=Element::DC_Scale;


/**
 * draws the node on DC
 */
void Element::Node::Draw(CDC* pDC, Solution::ConstPointer sol) const 
{
  // We can only draw 2D nodes here
  if(m_coordinates.size() != 2)
    {
    return;
    }
  
  // Normally we draw a white circle.
  CPen pen(PS_SOLID, 0, (COLORREF) RGB(0,0,0) );
  CBrush brush( RGB(255,255,255) );

  CPen* pOldpen=pDC->SelectObject(&pen);
  CBrush* pOldbrush=pDC->SelectObject(&brush);

  int x1=m_coordinates[0]*DC_Scale;
  int y1=m_coordinates[1]*DC_Scale;
  x1 += sol->GetSolutionValue(this->GetDegreeOfFreedom(0))*DC_Scale;
  y1 += sol->GetSolutionValue(this->GetDegreeOfFreedom(1))*DC_Scale;

  CPoint r1=CPoint(0,0);
  CPoint r=CPoint(5,5);

  pDC->DPtoLP(&r1);
  pDC->DPtoLP(&r);
  r=r-r1;

  pDC->Ellipse(x1-r.x, y1-r.y, x1+r.x, y1+r.y);

  pDC->SelectObject(pOldbrush);
  pDC->SelectObject(pOldpen);

}

#endif

/**
 * Read the Node from the input stream
 */
void Element::Node::Read(  std::istream& f, void* info )
{
  unsigned int n;

  /**
   * First call the parent's read function
   */
  Superclass::Read(f,info);

  /*
   * Read and set node coordinates
   */
  this->SkipWhiteSpace(f); f>>n; if(!f) goto out;
  this->m_coordinates.set_size(n);
  this->SkipWhiteSpace(f); f>>this->m_coordinates; if(!f) goto out;

out:

  if( !f )
    {
    throw FEMExceptionIO(__FILE__,__LINE__,"Element::Node::Read()","Error reading FEM node!");
    }
}

/*
 * Write the Node to the output stream
 */
void Element::Node::Write( std::ostream& f ) const 
{
  /**
   * First call the parent's write function
   */
  Superclass::Write(f);

  /**
   * Write actual data (node, and properties numbers)
   */
  
  /* write the value of dof */
  f<<"\t"<<this->m_coordinates.size();
  f<<" "<<this->m_coordinates<<"\t% Node coordinates"<<"\n";

  /** check for errors */
  if (!f)
    {
    throw FEMExceptionIO(__FILE__,__LINE__,"Element::Node::Write()","Error writing FEM node!");
    }
}

//////////////////////////////////////////////////////////////////////////
/**
 * Physics of a problem.
 */

/*
 * Compute and return element stiffnes matrix (Ke) in global coordinate
 * system.
 * The base class provides a general implementation which only computes
 *
 *     b   T
 * int    B(x) D B(x) dx
 *     a
 *
 * using the Gaussian numeric integration method. The function calls
 * GetIntegrationPointAndWeight() / GetNumberOfIntegrationPoints() to obtain
 * the integration points. It also calls the GetStrainDisplacementMatrix()
 * and GetMaterialMatrix() member functions.
 *
 * \param Ke Reference to the resulting stiffnes matrix.
 *
 * \note This is a very generic implementation of the stiffness matrix
 *       that is suitable for any problem/element definition. A specifc
 *       element may override this implementation with its own simple one.
 */
void Element::GetStiffnessMatrix(MatrixType& Ke) const
{
  // B and D matrices
  MatrixType B,D;
  this->GetMaterialMatrix( D );

  unsigned int Nip=this->GetNumberOfIntegrationPoints();

  VectorType ip;
  Float w;
  MatrixType J;
  MatrixType shapeDgl;
  MatrixType shapeD;

  // Calculate the contribution of 1st int. point to initialize
  // the Ke matrix to proper number of elements.
  this->GetIntegrationPointAndWeight(0,ip,w);
  this->ShapeFunctionDerivatives(ip,shapeD);
  this->Jacobian(ip,J,&shapeD);
  this->ShapeFunctionGlobalDerivatives(ip,shapeDgl,&J,&shapeD);

  this->GetStrainDisplacementMatrix( B, shapeDgl );
  Float detJ=this->JacobianDeterminant( ip, &J );
  Ke=detJ*w*B.transpose()*D*B; // FIXME: write a more efficient way of computing this.

  // Add contributions of other int. points to the Ke
  for(unsigned int i=1; i<Nip; i++)
    {
    this->GetIntegrationPointAndWeight(i,ip,w);
    this->ShapeFunctionDerivatives(ip,shapeD);
    this->Jacobian(ip,J,&shapeD);
    this->ShapeFunctionGlobalDerivatives(ip,shapeDgl,&J,&shapeD);

    this->GetStrainDisplacementMatrix( B, shapeDgl );
    detJ=this->JacobianDeterminant( ip, &J );
    Ke += detJ*w*B.transpose()*D*B; // FIXME: write a more efficient way of computing this.
    }
}

Element::VectorType Element::GetStrainsAtPoint(const VectorType& pt, const Solution& sol, unsigned int index) const
// NOTE: pt should be in local coordinates already
{
  MatrixType B;
  VectorType e, u;
  MatrixType J, shapeD, shapeDgl;
  
  this->ShapeFunctionDerivatives(pt, shapeD);
  this->Jacobian(pt, J, &shapeD);
  this->ShapeFunctionGlobalDerivatives(pt, shapeDgl, &J, &shapeD);
  this->GetStrainDisplacementMatrix(B, shapeDgl);
  
  u = this->InterpolateSolution(pt, sol, index);
  
  e = B*u;

  return e;
}

Element::VectorType Element::GetStressesAtPoint(const VectorType& itkNotUsed(pt),
                                                const VectorType& e,
                                                const Solution& itkNotUsed(sol),
                                                unsigned int itkNotUsed(index)) const
// NOTE: pt should be in local coordinates already
{
  MatrixType D;
  VectorType sigma;

  this->GetMaterialMatrix(D);
  
  sigma = D*e;

  return sigma;
}

void Element::GetLandmarkContributionMatrix(float eta, MatrixType& Le) const
{
  // Provides the contribution of a landmark to the element stiffness
  // matrix
  Le = MatrixType( this->GetNumberOfDegreesOfFreedom(), this->GetNumberOfDegreesOfFreedom(), 0.0 );

  const unsigned int NnDOF=this->GetNumberOfDegreesOfFreedomPerNode();
  const unsigned int Nnodes=this->GetNumberOfNodes();
  const unsigned int NDOF = GetNumberOfDegreesOfFreedom();
  const unsigned int Nip=this->GetNumberOfIntegrationPoints(0);

  Le.set_size(NDOF,NDOF); // resize the target matrix object
  Le.fill(0.0);

  Float w;
  VectorType ip, shape;

  for(unsigned int i=0; i<Nip; i++)
    {
    this->GetIntegrationPointAndWeight(i,ip,w,0);
    shape=this->ShapeFunctions(ip);
    
    for(unsigned int ni=0; ni<Nnodes; ni++)
      {
      for(unsigned int nj=0; nj<Nnodes; nj++)
        {
        Float m=w*shape[ni]*shape[nj];
        for(unsigned int d=0; d<NnDOF; d++)
          {
          Le[ni*NnDOF+d][nj*NnDOF+d] += m;
          }
        }
      }
    }

  Le = Le / (eta );
}


Element::Float Element::GetElementDeformationEnergy( MatrixType& LocalSolution ) const
{

  MatrixType U;

  Element::MatrixType Ke;
  this->GetStiffnessMatrix(Ke);

  U=LocalSolution.transpose()*Ke*LocalSolution;

  return U[0][0];
}

void Element::GetMassMatrix( MatrixType& Me ) const
{
  /*
   * If the function is not overiden, we compute consistent mass matrix
   * by integrating the shape functions over the element domain. The element
   * density is assumed one. If this is not the case, the GetMassMatrix in a
   * derived class must be overriden and the Me matrix corrected accordingly.
   */
  Me = MatrixType( this->GetNumberOfDegreesOfFreedom(), this->GetNumberOfDegreesOfFreedom(), 0.0 );

  const unsigned int NnDOF=this->GetNumberOfDegreesOfFreedomPerNode();
  const unsigned int Nnodes=this->GetNumberOfNodes();
  const unsigned int NDOF = GetNumberOfDegreesOfFreedom();
  const unsigned int Nip=this->GetNumberOfIntegrationPoints(0);

  Me.set_size(NDOF,NDOF); // resize the target matrix object
  Me.fill(0.0);

  Float w;
  VectorType ip, shape;
  MatrixType J, shapeD;

  for(unsigned int i=0; i<Nip; i++)
    {
    this->GetIntegrationPointAndWeight(i,ip,w,0);
    shape=this->ShapeFunctions(ip);
    this->ShapeFunctionDerivatives(ip,shapeD);
    this->Jacobian(ip,J,&shapeD);
    Float detJ=this->JacobianDeterminant( ip, &J );
    
    for(unsigned int ni=0; ni<Nnodes; ni++)
      {
      for(unsigned int nj=0; nj<Nnodes; nj++)
        {
        Float m=detJ*w*shape[ni]*shape[nj];
        for(unsigned int d=0; d<NnDOF; d++)
          {
          Me[ni*NnDOF+d][nj*NnDOF+d] += m;
          }
        }
      }
    }

}

Element::VectorType
Element::InterpolateSolution( const VectorType& pt, const Solution& sol, unsigned int solutionIndex  ) const
{

  VectorType vec( GetNumberOfDegreesOfFreedomPerNode() );
  VectorType shapef = this->ShapeFunctions(pt);
  Float value;

  const unsigned int Nnodes=this->GetNumberOfNodes();
  const unsigned int Ndofs_per_node=this->GetNumberOfDegreesOfFreedomPerNode();

  for(unsigned int f=0; f<Ndofs_per_node; f++)
    {
    value=0.0;

    for(unsigned int n=0; n<Nnodes; n++)
      {
      value += shapef[n] * sol.GetSolutionValue( this->GetNode(n)->GetDegreeOfFreedom(f) , solutionIndex);
      }

    vec[f]=value;

    }

  return vec;

}

Element::Float
Element::InterpolateSolutionN( const VectorType& pt, const Solution& sol, unsigned int f , unsigned int solutionIndex ) const
{

  Float value=0.0;

  VectorType shapef = this->ShapeFunctions(pt);
  unsigned int Nnodes=this->GetNumberOfNodes();
  for(unsigned int n=0; n<Nnodes; n++)
    {
    value += shapef[n] * sol.GetSolutionValue( this->GetNode(n)->GetDegreeOfFreedom(f), solutionIndex );
    }
  return value;

}

//////////////////////////////////////////////////////////////////////////
/**
 * Geometry of a problem.
 */

void
Element::Jacobian( const VectorType& pt, MatrixType& J, const MatrixType* pshapeD ) const
{
  MatrixType* pshapeDlocal=0;

  // If derivatives of shape functions were not provided, we
  // need to compute them here
  if(pshapeD==0)
    {
    pshapeDlocal=new MatrixType();
    this->ShapeFunctionDerivatives( pt, *pshapeDlocal );
    pshapeD=pshapeDlocal;
    }

  const unsigned int Nn=pshapeD->columns();
  const unsigned int Ndims=this->GetNumberOfSpatialDimensions();

  MatrixType coords(Nn, Ndims);

  for( unsigned int n=0; n<Nn; n++ )
    {
    VectorType p=this->GetNodeCoordinates(n);
    coords.set_row(n,p);
    }

  J=(*pshapeD)*coords;

  // Destroy local copy of derivatives of shape functions, if
  // they were computed.
  delete pshapeDlocal;

}

Element::Float
Element::JacobianDeterminant( const VectorType& pt, const MatrixType* pJ ) const
{
  MatrixType* pJlocal=0;

  // If Jacobian was not provided, we
  // need to compute it here
  if(pJ==0)
    {
    pJlocal=new MatrixType();
    this->Jacobian( pt, *pJlocal );
    pJ=pJlocal;
    }

  //  Float det=vnl_svd<Float>(*pJ).determinant_magnitude();
  Float det=vnl_qr<Float>(*pJ).determinant();

  delete pJlocal;

  return det;

}

void
Element::JacobianInverse( const VectorType& pt, MatrixType& invJ, const MatrixType* pJ ) const
{

  MatrixType* pJlocal=0;

  // If Jacobian was not provided, we
  // need to compute it here
  if(pJ==0)
    {
    pJlocal=new MatrixType();
    this->Jacobian( pt, *pJlocal );
    pJ=pJlocal;
    }

  //  invJ=vnl_svd_inverse<Float>(*pJ);
  invJ=vnl_qr<Float>(*pJ).inverse();

  delete pJlocal;

}

void Element::ShapeFunctionGlobalDerivatives( const VectorType& pt, MatrixType& shapeDgl, const MatrixType* pJ, const MatrixType* pshapeD ) const
{

  MatrixType* pshapeDlocal=0;
  MatrixType* pJlocal=0;

  // If derivatives of shape functions were not provided, we
  // need to compute them here
  if(pshapeD==0)
    {
    pshapeDlocal=new MatrixType();
    this->ShapeFunctionDerivatives( pt, *pshapeDlocal );
    pshapeD=pshapeDlocal;
    }

  // If Jacobian was not provided, we
  // need to compute it here
  if(pJ==0)
    {
    pJlocal=new MatrixType();
    this->Jacobian( pt, *pJlocal, pshapeD );
    pJ=pJlocal;
    }

  MatrixType invJ;
  this->JacobianInverse( pt, invJ, pJ );

  shapeDgl=invJ*(*pshapeD);

  delete pJlocal;
  delete pshapeDlocal;

}

Element::VectorType
Element::GetGlobalFromLocalCoordinates( const VectorType& pt ) const
{
  unsigned int Nnodes=this->GetNumberOfNodes();
  MatrixType nc(this->GetNumberOfSpatialDimensions(),Nnodes);
  for(unsigned int n=0; n<Nnodes; n++)
    {
    nc.set_column( n,this->GetNodeCoordinates(n) );
    }
  
  VectorType shapeF = ShapeFunctions(pt);

  return nc*shapeF;

}

// Gauss-Legendre integration rule constants
const Element::Float Element::gaussPoint[gaussMaxOrder+1][gaussMaxOrder]=
{
  { 0.0 },
  { 0.000000000000000 },
  { 0.577350269189626,-0.577350269189626 },
  { 0.774596669241483, 0.000000000000000,-0.774596669241483 },
  { 0.861136311594053, 0.339981043584856,-0.339981043584856,-0.861136311594053 },
  { 0.906179845938664, 0.538469310105683, 0.000000000000000,-0.538469310105683,-0.906179845938664},
  { 0.932469514203152, 0.661209386466264, 0.238619186083197,-0.238619186083197,-0.661209386466264,-0.932469514203152 },
  { 0.949107912342759, 0.741531185599394, 0.405845151377397, 0.000000000000000,-0.405845151377397,-0.741531185599394,-0.949107912342759 },
  { 0.960289856497536, 0.796666477413627, 0.525532409916329, 0.183434642495650,-0.183434642495650,-0.525532409916329,-0.796666477413627,-0.960289856497536 },
  { 0.968160239507626, 0.836031107326636, 0.613371432700590, 0.324253423403809, 0.000000000000000,-0.324253423403809,-0.613371432700590,-0.836031107326636,-0.968160239507626 },
  { 0.973906528517172, 0.865063366688985, 0.679409568299024, 0.433395394129247, 0.148874338981631,-0.148874338981631,-0.433395394129247,-0.679409568299024,-0.865063366688985,-0.973906528517172 }
};

const Element::Float Element::gaussWeight[gaussMaxOrder+1][gaussMaxOrder]=
{
  { 0.0 },
  { 2.000000000000000 },
  { 1.000000000000000, 1.000000000000000 },
  { 0.555555555555555, 0.888888888888889, 0.555555555555555 },
  { 0.347854845137454, 0.652145154862546, 0.652145154862546, 0.347854845137454 },
  { 0.236926885056189, 0.478628670499366, 0.568888888888889, 0.478628670499366, 0.236926885056189 },
  { 0.171324492379170, 0.360761573048139, 0.467913934572691, 0.467913934572691, 0.360761573048139, 0.171324492379170 },
  { 0.129484966168869, 0.279705391489277, 0.381830050505119, 0.417959183673469, 0.381830050505119, 0.279705391489277, 0.129484966168869 },
  { 0.101228536290376, 0.222381034453374, 0.313706645877887, 0.362683783378362, 0.362683783378362, 0.313706645877887, 0.222381034453374, 0.101228536290376 },
  { 0.081274388361575, 0.180648160694858, 0.260610696402935, 0.312347077040003, 0.330239355001260, 0.312347077040003, 0.260610696402935, 0.180648160694858, 0.081274388361575 },
  { 0.066671344308688, 0.149451349150581, 0.219086362515982, 0.269266719309996, 0.295524224714753, 0.295524224714753, 0.269266719309996, 0.219086362515982, 0.149451349150581, 0.066671344308688 }
};

// Register Node class with FEMObjectFactory
FEM_CLASS_REGISTER(Node);

}} // end namespace itk::fem