1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGaussianDensityFunction.h
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkGaussianDensityFunction_h
#define __itkGaussianDensityFunction_h
#include "itkArray.h"
#include "itkVariableSizeMatrix.h"
#include "vnl/algo/vnl_matrix_inverse.h"
#include "vnl/algo/vnl_determinant.h"
#include "vnl/vnl_math.h"
#include "itkMatrix.h"
#include "itkDensityFunction.h"
namespace itk {
namespace Statistics {
/** \class GaussianDensityFunction
* \brief GaussianDensityFunction class represents Gaussian Density Function.
*
* This class keeps parameter to define Gaussian Density Function and has
* method to return the probability density
* of an instance (pattern) .
* If the all element of the covariance matrix is zero the "usual" density
* calculations ignored. if the measurement vector to be evaluated is equal to
* the mean, then the Evaluate method will return maximum value of
* double and return 0 for others
*
* <b>Recent API changes:</b>
* The static const macro to get the length of a measurement vector,
* \c MeasurementVectorSize has been removed to allow the length of a measurement
* vector to be specified at run time. It is now obtained at run time from the
* sample set as input. Please use the function
* GetMeasurementVectorSize() to get the length. The typedef for the Mean has
* changed from FixedArray to Array. The typedef for the covariance matrix
* has changed from Matrix to VariableSizeMatrix.
*
*/
template< class TMeasurementVector >
class ITK_EXPORT GaussianDensityFunction :
public DensityFunction< TMeasurementVector >
{
public:
/** Standard class typedefs */
typedef GaussianDensityFunction Self;
typedef DensityFunction< TMeasurementVector > Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Strandard macros */
itkTypeMacro(GaussianDensityFunction, DensityFunction);
itkNewMacro(Self);
/** Typedef alias for the measurement vectors */
typedef TMeasurementVector MeasurementVectorType;
/** Length of each measurement vector */
typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;
/** Type of the mean vector */
typedef Array< double > MeanType;
/** Type of the covariance matrix */
typedef VariableSizeMatrix< double > CovarianceType;
/** Sets the mean */
void SetMean( const MeanType * mean )
{
if( this->GetMeasurementVectorSize() )
{
MeasurementVectorTraits::Assert(mean, this->GetMeasurementVectorSize(),
"GaussianDensityFunction::SetMean Size of measurement vectors in the sample must the same as the size of the mean." );
}
else
{
this->SetMeasurementVectorSize( mean->Size() );
}
if ( m_Mean != mean)
{
m_Mean = mean;
this->Modified();
}
}
/** Gets the mean */
const MeanType * GetMean() const
{ return m_Mean; }
/** Sets the covariance matrix.
* Also, this function calculates inverse covariance and pre factor of
* Gaussian Distribution to speed up GetProbability */
void SetCovariance(const CovarianceType* cov);
/** Gets the covariance matrix */
const CovarianceType* GetCovariance() const;
/** Gets the probability density of a measurement vector. */
double Evaluate(const MeasurementVectorType &measurement) const;
protected:
GaussianDensityFunction(void);
virtual ~GaussianDensityFunction(void) {}
void PrintSelf(std::ostream& os, Indent indent) const;
private:
const MeanType * m_Mean; // mean
const CovarianceType * m_Covariance; // covariance matrix
// inverse covariance matrix which is automatically calculated
// when covariace matirx is set. This speed up the GetProbability()
CovarianceType m_InverseCovariance;
// pre_factor which is automatically calculated
// when covariace matirx is set. This speeds up the GetProbability()
double m_PreFactor;
/** if the all element of the given covarinace is zero, then this
* value set to true */
bool m_IsCovarianceZero;
};
} // end of namespace Statistics
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDensityFunction.txx"
#endif
#endif
|