File: itkGaussianDensityFunction.h

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (145 lines) | stat: -rw-r--r-- 4,951 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianDensityFunction.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkGaussianDensityFunction_h
#define __itkGaussianDensityFunction_h

#include "itkArray.h"
#include "itkVariableSizeMatrix.h"
#include "vnl/algo/vnl_matrix_inverse.h"
#include "vnl/algo/vnl_determinant.h"
#include "vnl/vnl_math.h"

#include "itkMatrix.h"
#include "itkDensityFunction.h"

namespace itk { 
namespace Statistics {

/** \class GaussianDensityFunction
 * \brief GaussianDensityFunction class represents Gaussian Density Function.
 *
 * This class keeps parameter to define Gaussian Density Function  and has
 * method to return the probability density 
 * of an instance (pattern) .  
 * If the all element of the covariance matrix is zero the "usual" density 
 * calculations ignored. if the measurement vector to be evaluated is equal to
 * the mean, then the Evaluate method will return maximum value of
 * double and return 0 for others 
 * 
 * <b>Recent API changes:</b>
 * The static const macro to get the length of a measurement vector,
 * \c MeasurementVectorSize  has been removed to allow the length of a measurement
 * vector to be specified at run time. It is now obtained at run time from the
 * sample set as input. Please use the function 
 * GetMeasurementVectorSize() to get the length. The typedef for the Mean has 
 * changed from FixedArray to Array. The typedef for the covariance matrix
 * has changed from Matrix to VariableSizeMatrix.
 *
 */

template< class TMeasurementVector >
class ITK_EXPORT GaussianDensityFunction :
    public DensityFunction< TMeasurementVector >
{
public:
  /** Standard class typedefs */
  typedef GaussianDensityFunction               Self;
  typedef DensityFunction< TMeasurementVector > Superclass;
  typedef SmartPointer<Self>                    Pointer;
  typedef SmartPointer<const Self>              ConstPointer;

  /** Strandard macros */
  itkTypeMacro(GaussianDensityFunction, DensityFunction);
  itkNewMacro(Self);
  
  /** Typedef alias for the measurement vectors */
  typedef TMeasurementVector MeasurementVectorType;

  /** Length of each measurement vector */
  typedef typename Superclass::MeasurementVectorSizeType MeasurementVectorSizeType;
  
  /** Type of the mean vector */
  typedef Array< double >                               MeanType;
  
  /** Type of the covariance matrix */
  typedef VariableSizeMatrix< double >                  CovarianceType;

  /** Sets the mean */
  void SetMean( const MeanType * mean )
    {
    if( this->GetMeasurementVectorSize() )
      {
      MeasurementVectorTraits::Assert(mean, this->GetMeasurementVectorSize(),
                                      "GaussianDensityFunction::SetMean Size of measurement vectors in the sample must the same as the size of the mean." );
      }
    else
      {
      this->SetMeasurementVectorSize( mean->Size() );
      }

    if ( m_Mean != mean) 
      {
      m_Mean = mean;
      this->Modified();
      }
    }
  
  /** Gets the mean */
  const MeanType * GetMean() const
    { return m_Mean; }

  /** Sets the covariance matrix.
   * Also, this function calculates inverse covariance and pre factor of 
   * Gaussian Distribution to speed up GetProbability */
  void SetCovariance(const CovarianceType* cov); 
  
  /** Gets the covariance matrix */
  const CovarianceType* GetCovariance() const;

  /** Gets the probability density of a measurement vector. */
  double Evaluate(const MeasurementVectorType &measurement) const;
  
protected:
  GaussianDensityFunction(void);
  virtual ~GaussianDensityFunction(void) {}
  void PrintSelf(std::ostream& os, Indent indent) const;

private:
  const MeanType        * m_Mean;           // mean
  const CovarianceType  * m_Covariance;     // covariance matrix

  // inverse covariance matrix which is automatically calculated 
  // when covariace matirx is set.  This speed up the GetProbability()
  CovarianceType  m_InverseCovariance; 

  // pre_factor which is automatically calculated 
  // when covariace matirx is set.  This speeds up the GetProbability()  
  double m_PreFactor;

  /** if the all element of the given covarinace is zero, then this
   * value set to true */
  bool m_IsCovarianceZero;
};

} // end of namespace Statistics
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkGaussianDensityFunction.txx"
#endif

#endif