File: itkChiSquareDistribution.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (379 lines) | stat: -rw-r--r-- 9,162 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkChiSquareDistribution.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#include "itkChiSquareDistribution.h"
#include "itkGaussianDistribution.h"
#include "itkNumericTraits.h"
#include "vnl/vnl_math.h"
#include "vnl/vnl_erf.h"

extern "C" double dgami_(double *a, double *x);
extern "C" double dgamma_(double *x);

namespace itk { 
namespace Statistics {

ChiSquareDistribution
::ChiSquareDistribution()
{
  m_Parameters = ParametersType(1);
  m_Parameters[0] = 1.0;
}

void
ChiSquareDistribution
::SetDegreesOfFreedom(long dof)
{
  bool modified = false;

  if (m_Parameters.GetSize() > 0)
    {
    if (m_Parameters[0] != static_cast<double>(dof) )
      {
      modified = true;
      }
    }
  
  if (m_Parameters.GetSize() != 1)
    {
    m_Parameters = ParametersType(1);
    }

  m_Parameters[0] = static_cast<double>(dof);

  if (modified)
    {
    this->Modified();
    }
}

long
ChiSquareDistribution
::GetDegreesOfFreedom() const
{
  if (m_Parameters.GetSize() != 1)
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << m_Parameters.size()
      << " parameters.");
    }
  return static_cast<long>(m_Parameters[0]);
}

double
ChiSquareDistribution
::PDF(double x, long degreesOfFreedom)
{
  double dof = static_cast<double>(degreesOfFreedom);
  double dofon2 = 0.5*dof;
  double pdf = 0.0;

  if (x >= 0.0)
    {
    pdf = vcl_exp(-0.5*x) * vcl_pow(x, dofon2 - 1.0)
      / (vcl_pow(2.0, dofon2) * dgamma_(&dofon2));
    }
  
  return pdf;
}


double
ChiSquareDistribution
::PDF(double x, const ParametersType& p)
{
  if (p.GetSize() != 1)
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << p.size()
      << " parameters.");
    }
  return ChiSquareDistribution::PDF(x, static_cast<long>(p[0]));
}

double
ChiSquareDistribution
::CDF(double x, long degreesOfFreedom)
{
  // Based on Abramowitz and Stegun 26.4.19 which relates the
  // cumulative of the chi-square to incomplete (and complete) gamma
  // function.
  if (x < 0)
    {
    return 0.0;
    }

  double dofon2 = 0.5*degreesOfFreedom;
  double xon2 = 0.5*x;
  
  return dgami_(&dofon2, &xon2) / dgamma_(&dofon2);
}


double
ChiSquareDistribution
::CDF(double x, const ParametersType& p)
{
  if (p.GetSize() != 1)
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << p.size()
      << " parameters.");
    }
  return ChiSquareDistribution::CDF(x, (long) p[0]);
}

double
ChiSquareDistribution
::InverseCDF(double p, long degreesOfFreedom)
{
  if (p <= 0.0)
    {
    return itk::NumericTraits<double>::Zero;
    }
  else if (p >= 1.0)
    {
    return itk::NumericTraits<double>::max();
    }

  double x;
  double dof;
  double nx;

  // Based on Abramowitz and Stegun 26.4.17
  dof = static_cast<double>(degreesOfFreedom);
  nx = GaussianDistribution::InverseCDF(p);

  double f = 2.0 / (9.0*dof);
  x = dof*vcl_pow(1.0 - f + nx*vcl_sqrt(f), 3.0);


  // The approximation above is only accurate for large degrees of
  // freedom. We'll improve the approximation by a few Newton iterations.
  //
  //   0 iterations, error = 10^-1  at 1 degree of freedom
  //   3 iterations, error = 10^-11 at 1 degree of freedom 
  //  10 iterations, erorr = 10^-13 at 1 degree of freedom
  //  20 iterations, erorr = 10^-13 at 1 degree of freedom
  //
  //   0 iterations, error = 10^-1  at 11 degrees of freedom
  //   3 iterations, error = 10^-8  at 11 degrees of freedom 
  //  10 iterations, erorr = 10^-13 at 11 degrees of freedom
  //  20 iterations, erorr = 10^-13 at 11 degrees of freedom
  //
  //   0 iterations, error = 10^-1  at 100 degrees of freedom
  //   3 iterations, error = 10^-9  at 100 degrees of freedom 
  //  10 iterations, erorr = 10^-10 at 100 degrees of freedom
  //  20 iterations, erorr = 10^-9  at 100 degrees of freedom
  
  
  // We are trying to find the zero of
  //
  // f(x) = p - chisquarecdf(x) = 0;
  //
  // So,
  //
  // x(n+1) = x(n) - f(x(n)) / f'(x(n))
  //        = x(n) + (p - chisquarecdf(x)) / chisquarepdf(x)
  //
  // Note that f'(x) = - chisquarepdf(x)
  //
  double delta;
  for (unsigned int newt = 0; newt < 10; ++newt)
    {
    delta = (p - ChiSquareDistribution::CDF(x, degreesOfFreedom))
      / ChiSquareDistribution::PDF(x, degreesOfFreedom);
    x += delta;
    }

  return x;
}


double
ChiSquareDistribution
::InverseCDF(double p, const ParametersType& params)
{
  if( params.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << params.size()
      << " parameters.");
    }
  return ChiSquareDistribution::InverseCDF(p, static_cast<long>(params[0]));
}

double
ChiSquareDistribution
::EvaluatePDF(double x) const
{
  if( m_Parameters.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << m_Parameters.size()
      << " parameters.");
    }
  return ChiSquareDistribution::PDF(x, static_cast<long>(m_Parameters[0]));
}

double
ChiSquareDistribution
::EvaluatePDF(double x, const ParametersType& p) const
{
  if( p.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << p.size()
      << " parameters.");
    }
  return ChiSquareDistribution::PDF(x, static_cast<long>(p[0]));
}

double
ChiSquareDistribution
::EvaluatePDF(double x, long degreesOfFreedom) const
{
  return ChiSquareDistribution::PDF(x, degreesOfFreedom);
}


double
ChiSquareDistribution
::EvaluateCDF(double x) const
{
  if( m_Parameters.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << m_Parameters.size()
      << " parameters.");
    }
  return ChiSquareDistribution::CDF(x, static_cast<long>(m_Parameters[0]));
}

double
ChiSquareDistribution
::EvaluateCDF(double x, const ParametersType& p) const
{
  if( p.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << p.size()
      << " parameters.");
    }
  return ChiSquareDistribution::CDF(x, static_cast<long>(p[0]));
}

double
ChiSquareDistribution
::EvaluateCDF(double x, long degreesOfFreedom) const
{
  return ChiSquareDistribution::CDF(x, degreesOfFreedom);
}


double
ChiSquareDistribution
::EvaluateInverseCDF(double p) const
{
  if( m_Parameters.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << m_Parameters.size()
      << " parameters.");
    }
  return ChiSquareDistribution::InverseCDF(p, static_cast<long>(m_Parameters[0]));
}

double
ChiSquareDistribution
::EvaluateInverseCDF(double p, const ParametersType& params) const
{
  if( params.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << params.size()
      << " parameters.");
    }
  return ChiSquareDistribution::InverseCDF(p, static_cast<long>(params[0]));
}

double
ChiSquareDistribution
::EvaluateInverseCDF(double p, long degreesOfFreedom) const
{
  return ChiSquareDistribution::InverseCDF(p, degreesOfFreedom);
}


double
ChiSquareDistribution
::GetMean() const
{
  if( m_Parameters.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << m_Parameters.size()
      << " parameters.");
    }
  return m_Parameters[0];
}

double
ChiSquareDistribution
::GetVariance() const
{
  if( m_Parameters.GetSize() != 1 )
    {
    itkGenericExceptionMacro(
      "Invalid number of parameters to describe distribution. Expected 1 parameter, but got "
      << m_Parameters.size()
      << " parameters.");
    }
  return 2.0 * m_Parameters[0];
}

void  
ChiSquareDistribution
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);

  if (m_Parameters.GetSize() > 0)
    {
    os << indent << "Degrees of freedom: "
       << static_cast<long>(m_Parameters[0]) << std::endl;
    }
  else
    {
    os << indent << "Degrees of freedom: (unknown)"
       << std::endl;
    }
}

} // end of namespace Statistics
} // end namespace itk