File: itkCovarianceSampleFilter.h

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (120 lines) | stat: -rw-r--r-- 4,043 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkCovarianceSampleFilter.h
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#ifndef __itkCovarianceSampleFilter_h
#define __itkCovarianceSampleFilter_h

#include "itkProcessObject.h"

#include "itkArray.h"
#include "itkVariableSizeMatrix.h"
#include "itkSimpleDataObjectDecorator.h"

namespace itk { 
namespace Statistics {
  
/** \class CovarianceSampleFilter
 * \brief Calculates the covariance matrix of the target sample data.
 *
 * The filter calculates first the sample mean and use it in the covariance
 * calculation. The covariance is computed as follows
 * Let \f$\Sigma\f$ denotes covariance matrix for the sample, then:
 * When \f$x_{i}\f$ is \f$i\f$th component of a measurement vector 
 * \f$\vec x\f$, \f$\mu_{i}\f$ is the \f$i\f$th componet of the \f$\vec\mu\f$, 
 * and the \f$\sigma_{ij}\f$ is the \f$ij\f$th componet \f$\Sigma\f$,
 * \f$\sigma_{ij} = (x_{i} - \mu_{i})(x_{j} - \mu_{j})\f$ 
 *
 * Without the plugged in mean vector, this calculator will perform
 * the single pass mean and covariance calculation algorithm.  
 * 
 */

template< class TSample >
class ITK_EXPORT CovarianceSampleFilter :
    public ProcessObject
{
public:
  /** Standard class typedefs. */
  typedef CovarianceSampleFilter          Self;
  typedef ProcessObject                   Superclass;
  typedef SmartPointer<Self>              Pointer;
  typedef SmartPointer<const Self>        ConstPointer;
  typedef TSample                         SampleType;

  /** Standard Macros */
  itkTypeMacro(CovarianceSampleFilter, ProcessObject);
  itkNewMacro(Self);
  
  /** Length of a measurement vector */
  typedef typename TSample::MeasurementVectorSizeType MeasurementVectorSizeType;

  /** Measurement vector type */
  typedef typename TSample::MeasurementVectorType MeasurementVectorType;
  
  /** Typedef for Covariance output */
  typedef VariableSizeMatrix< double >               MatrixType;

  /** Method to set/get the sample */
  void SetInput( const SampleType * sample );
  const SampleType *  GetInput() const;

  /** VariableSizeMatrix is not a DataObject, we need to decorate it to push it down
   * a ProcessObject's pipeline */
  typedef  SimpleDataObjectDecorator< MatrixType >  MatrixDecoratedType;

  /** MeasurementVector is not a DataObject, we need to decorate it to push it down
   * a ProcessObject's pipeline */
  typedef  SimpleDataObjectDecorator< MeasurementVectorType >  MeasurementVectorDecoratedType;

  typedef MeasurementVectorDecoratedType OutputType;
  
  /** Return the covariance matrix */
  const MatrixType GetCovarianceMatrix() const;
  const MatrixDecoratedType* GetCovarianceMatrixOutput() const;

  /** Return the mean vector */
  const MeasurementVectorType GetMean() const;
  const MeasurementVectorDecoratedType* GetMeanOutput() const;

protected:
  CovarianceSampleFilter(const Self&); //purposely not implemented
  void operator=(const Self&); //purposely not implemented

  CovarianceSampleFilter();
  virtual ~CovarianceSampleFilter();
  void PrintSelf(std::ostream& os, Indent indent) const;

  /** DataObject pointer */
  typedef DataObject::Pointer DataObjectPointer;

  virtual DataObjectPointer MakeOutput(unsigned int idx);

  void GenerateData();

  MeasurementVectorSizeType GetMeasurementVectorSize() const;

private:
}; // end of class
    
} // end of namespace Statistics 
} // end of namespace itk 

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCovarianceSampleFilter.txx"
#endif

#endif