File: itkCovarianceSampleFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (262 lines) | stat: -rw-r--r-- 7,401 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkCovarianceSampleFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkCovarianceSampleFilter_txx
#define __itkCovarianceSampleFilter_txx

#include "itkMeasurementVectorTraits.h"

namespace itk { 
namespace Statistics {

template< class TSample >
CovarianceSampleFilter< TSample >
::CovarianceSampleFilter()  
{
  this->ProcessObject::SetNumberOfRequiredInputs(1);
  this->ProcessObject::SetNumberOfRequiredOutputs(2);

  this->ProcessObject::SetNthOutput(0, this->MakeOutput(0) );
  this->ProcessObject::SetNthOutput(1, this->MakeOutput(1) );
}

template< class TSample >
CovarianceSampleFilter< TSample >
::~CovarianceSampleFilter()  
{
}

template< class TSample >
void
CovarianceSampleFilter< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
  Superclass::PrintSelf(os,indent);
}

template< class TSample >
void
CovarianceSampleFilter< TSample >
::SetInput( const SampleType * sample )
{
  this->ProcessObject::SetNthInput(0, const_cast< SampleType* >( sample ) );
}

template< class TSample >
const TSample *
CovarianceSampleFilter< TSample >
::GetInput( ) const
{
  if (this->GetNumberOfInputs() < 1)
    {
    return 0;
    }

  return static_cast<const SampleType * >
  (this->ProcessObject::GetInput(0) );
}

template< class TSample >
typename CovarianceSampleFilter< TSample>::DataObjectPointer
CovarianceSampleFilter< TSample >
::MakeOutput(unsigned int index )
{
  MeasurementVectorSizeType measurementVectorSize = this->GetMeasurementVectorSize();

  if ( index == 0 )
    {
    MatrixType covarianceMatrix( measurementVectorSize, measurementVectorSize );
    covarianceMatrix.SetIdentity();
    MatrixDecoratedType::Pointer decoratedCovarianceMatrix = MatrixDecoratedType::New();
    decoratedCovarianceMatrix->Set( covarianceMatrix );
    return static_cast< DataObject * >(decoratedCovarianceMatrix.GetPointer());
    }

  if ( index == 1 )
    {
    typedef typename MeasurementVectorTraitsTypes< MeasurementVectorType >::ValueType   ValueType;
    MeasurementVectorType mean;
    (void)mean; // for complainty pants : valgrind
    MeasurementVectorTraits::SetLength( mean,  this->GetMeasurementVectorSize() );
    mean.Fill( NumericTraits< ValueType >::Zero );
    typename MeasurementVectorDecoratedType::Pointer decoratedMean = MeasurementVectorDecoratedType::New();
    decoratedMean->Set( mean ); 
    return static_cast< DataObject * >( decoratedMean.GetPointer() );
    }
  itkExceptionMacro("Trying to create output of index " << index << " larger than the number of output");
}

template< class TSample >
typename CovarianceSampleFilter< TSample >::MeasurementVectorSizeType 
CovarianceSampleFilter< TSample >
::GetMeasurementVectorSize() const
{
  const SampleType *input = this->GetInput();

  if( input )
    {
    return input->GetMeasurementVectorSize();
    }

  // Test if the Vector type knows its length
  MeasurementVectorType vector;
  MeasurementVectorSizeType measurementVectorSize = MeasurementVectorTraits::GetLength( vector );

  if( measurementVectorSize )
    {
    return measurementVectorSize;
    }

  measurementVectorSize = 1; // Otherwise set it to an innocuous value

  return measurementVectorSize;
}
 

template< class TSample >
inline void
CovarianceSampleFilter< TSample >
::GenerateData() 
{
  const SampleType *input = this->GetInput();

  MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();
 
  MatrixDecoratedType * decoratedOutput =
            static_cast< MatrixDecoratedType * >(
              this->ProcessObject::GetOutput(0));

  MatrixType output = decoratedOutput->Get();

  MeasurementVectorDecoratedType * decoratedMeanOutput =
            static_cast< MeasurementVectorDecoratedType * >(
              this->ProcessObject::GetOutput(1));

  output.SetSize( measurementVectorSize, measurementVectorSize );
  output.Fill(0.0);

  MeasurementVectorType mean;

  MeasurementVectorTraits::SetLength( mean, measurementVectorSize );

  mean.Fill(0.0);

  double frequency;
  double totalFrequency = 0.0;

  typename TSample::ConstIterator iter = input->Begin();
  typename TSample::ConstIterator end = input->End();

  MeasurementVectorType diff;
  MeasurementVectorType measurements;

  MeasurementVectorTraits::SetLength( diff, measurementVectorSize );
  MeasurementVectorTraits::SetLength( measurements, measurementVectorSize );

  //Compute the mean first
  while (iter != end)
    {
    frequency = iter.GetFrequency();
    totalFrequency += frequency;
    measurements = iter.GetMeasurementVector();

    for( unsigned int i = 0; i < measurementVectorSize; ++i )
      {
      mean[i] += frequency * measurements[i];
      }
    ++iter;
    }

  for( unsigned int i = 0; i < measurementVectorSize; ++i )
    {
    mean[i] = mean[i] / totalFrequency;
    }

   decoratedMeanOutput->Set( mean );

  //reset the total frequency and iterator
  iter = input->Begin();
  // fills the lower triangle and the diagonal cells in the covariance matrix
  while (iter != end)
    {
    frequency = iter.GetFrequency();
    measurements = iter.GetMeasurementVector();
    for ( unsigned int i = 0; i < measurementVectorSize; ++i )
      {
      diff[i] = measurements[i] - mean[i];
      }

    // updates the covariance matrix
    for( unsigned int row = 0; row < measurementVectorSize; row++ )
      {
      for( unsigned int col = 0; col < row + 1; col++)
        {
        output(row,col) += frequency * diff[row] * diff[col];
        }
      }
    ++iter;
    }

  // fills the upper triangle using the lower triangle  
  for( unsigned int row = 1; row < measurementVectorSize; row++)
    {
    for( unsigned int col = 0; col < row; col++)
      {
      output(col, row) = output(row, col);
      } 
    }

  output /= ( totalFrequency - 1.0 );

  decoratedOutput->Set( output );
}

template< class TSample >
const typename CovarianceSampleFilter< TSample>::MatrixDecoratedType *
CovarianceSampleFilter< TSample >
::GetCovarianceMatrixOutput() const
{
  return static_cast<const MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));
}

template< class TSample >
const typename CovarianceSampleFilter< TSample>::MatrixType
CovarianceSampleFilter< TSample >
::GetCovarianceMatrix() const 
{
  return this->GetCovarianceMatrixOutput()->Get();
}

template< class TSample >
const typename CovarianceSampleFilter< TSample>::MeasurementVectorDecoratedType *
CovarianceSampleFilter< TSample >
::GetMeanOutput() const
{
  return static_cast<const MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));
}

template< class TSample >
const typename CovarianceSampleFilter< TSample>::MeasurementVectorType
CovarianceSampleFilter< TSample >
::GetMean() const 
{
  return this->GetMeanOutput()->Get();
}

} // end of namespace Statistics 
} // end of namespace itk

#endif