1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCovarianceSampleFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkCovarianceSampleFilter_txx
#define __itkCovarianceSampleFilter_txx
#include "itkMeasurementVectorTraits.h"
namespace itk {
namespace Statistics {
template< class TSample >
CovarianceSampleFilter< TSample >
::CovarianceSampleFilter()
{
this->ProcessObject::SetNumberOfRequiredInputs(1);
this->ProcessObject::SetNumberOfRequiredOutputs(2);
this->ProcessObject::SetNthOutput(0, this->MakeOutput(0) );
this->ProcessObject::SetNthOutput(1, this->MakeOutput(1) );
}
template< class TSample >
CovarianceSampleFilter< TSample >
::~CovarianceSampleFilter()
{
}
template< class TSample >
void
CovarianceSampleFilter< TSample >
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
}
template< class TSample >
void
CovarianceSampleFilter< TSample >
::SetInput( const SampleType * sample )
{
this->ProcessObject::SetNthInput(0, const_cast< SampleType* >( sample ) );
}
template< class TSample >
const TSample *
CovarianceSampleFilter< TSample >
::GetInput( ) const
{
if (this->GetNumberOfInputs() < 1)
{
return 0;
}
return static_cast<const SampleType * >
(this->ProcessObject::GetInput(0) );
}
template< class TSample >
typename CovarianceSampleFilter< TSample>::DataObjectPointer
CovarianceSampleFilter< TSample >
::MakeOutput(unsigned int index )
{
MeasurementVectorSizeType measurementVectorSize = this->GetMeasurementVectorSize();
if ( index == 0 )
{
MatrixType covarianceMatrix( measurementVectorSize, measurementVectorSize );
covarianceMatrix.SetIdentity();
MatrixDecoratedType::Pointer decoratedCovarianceMatrix = MatrixDecoratedType::New();
decoratedCovarianceMatrix->Set( covarianceMatrix );
return static_cast< DataObject * >(decoratedCovarianceMatrix.GetPointer());
}
if ( index == 1 )
{
typedef typename MeasurementVectorTraitsTypes< MeasurementVectorType >::ValueType ValueType;
MeasurementVectorType mean;
(void)mean; // for complainty pants : valgrind
MeasurementVectorTraits::SetLength( mean, this->GetMeasurementVectorSize() );
mean.Fill( NumericTraits< ValueType >::Zero );
typename MeasurementVectorDecoratedType::Pointer decoratedMean = MeasurementVectorDecoratedType::New();
decoratedMean->Set( mean );
return static_cast< DataObject * >( decoratedMean.GetPointer() );
}
itkExceptionMacro("Trying to create output of index " << index << " larger than the number of output");
}
template< class TSample >
typename CovarianceSampleFilter< TSample >::MeasurementVectorSizeType
CovarianceSampleFilter< TSample >
::GetMeasurementVectorSize() const
{
const SampleType *input = this->GetInput();
if( input )
{
return input->GetMeasurementVectorSize();
}
// Test if the Vector type knows its length
MeasurementVectorType vector;
MeasurementVectorSizeType measurementVectorSize = MeasurementVectorTraits::GetLength( vector );
if( measurementVectorSize )
{
return measurementVectorSize;
}
measurementVectorSize = 1; // Otherwise set it to an innocuous value
return measurementVectorSize;
}
template< class TSample >
inline void
CovarianceSampleFilter< TSample >
::GenerateData()
{
const SampleType *input = this->GetInput();
MeasurementVectorSizeType measurementVectorSize = input->GetMeasurementVectorSize();
MatrixDecoratedType * decoratedOutput =
static_cast< MatrixDecoratedType * >(
this->ProcessObject::GetOutput(0));
MatrixType output = decoratedOutput->Get();
MeasurementVectorDecoratedType * decoratedMeanOutput =
static_cast< MeasurementVectorDecoratedType * >(
this->ProcessObject::GetOutput(1));
output.SetSize( measurementVectorSize, measurementVectorSize );
output.Fill(0.0);
MeasurementVectorType mean;
MeasurementVectorTraits::SetLength( mean, measurementVectorSize );
mean.Fill(0.0);
double frequency;
double totalFrequency = 0.0;
typename TSample::ConstIterator iter = input->Begin();
typename TSample::ConstIterator end = input->End();
MeasurementVectorType diff;
MeasurementVectorType measurements;
MeasurementVectorTraits::SetLength( diff, measurementVectorSize );
MeasurementVectorTraits::SetLength( measurements, measurementVectorSize );
//Compute the mean first
while (iter != end)
{
frequency = iter.GetFrequency();
totalFrequency += frequency;
measurements = iter.GetMeasurementVector();
for( unsigned int i = 0; i < measurementVectorSize; ++i )
{
mean[i] += frequency * measurements[i];
}
++iter;
}
for( unsigned int i = 0; i < measurementVectorSize; ++i )
{
mean[i] = mean[i] / totalFrequency;
}
decoratedMeanOutput->Set( mean );
//reset the total frequency and iterator
iter = input->Begin();
// fills the lower triangle and the diagonal cells in the covariance matrix
while (iter != end)
{
frequency = iter.GetFrequency();
measurements = iter.GetMeasurementVector();
for ( unsigned int i = 0; i < measurementVectorSize; ++i )
{
diff[i] = measurements[i] - mean[i];
}
// updates the covariance matrix
for( unsigned int row = 0; row < measurementVectorSize; row++ )
{
for( unsigned int col = 0; col < row + 1; col++)
{
output(row,col) += frequency * diff[row] * diff[col];
}
}
++iter;
}
// fills the upper triangle using the lower triangle
for( unsigned int row = 1; row < measurementVectorSize; row++)
{
for( unsigned int col = 0; col < row; col++)
{
output(col, row) = output(row, col);
}
}
output /= ( totalFrequency - 1.0 );
decoratedOutput->Set( output );
}
template< class TSample >
const typename CovarianceSampleFilter< TSample>::MatrixDecoratedType *
CovarianceSampleFilter< TSample >
::GetCovarianceMatrixOutput() const
{
return static_cast<const MatrixDecoratedType *>(this->ProcessObject::GetOutput(0));
}
template< class TSample >
const typename CovarianceSampleFilter< TSample>::MatrixType
CovarianceSampleFilter< TSample >
::GetCovarianceMatrix() const
{
return this->GetCovarianceMatrixOutput()->Get();
}
template< class TSample >
const typename CovarianceSampleFilter< TSample>::MeasurementVectorDecoratedType *
CovarianceSampleFilter< TSample >
::GetMeanOutput() const
{
return static_cast<const MeasurementVectorDecoratedType *>(this->ProcessObject::GetOutput(1));
}
template< class TSample >
const typename CovarianceSampleFilter< TSample>::MeasurementVectorType
CovarianceSampleFilter< TSample >
::GetMean() const
{
return this->GetMeanOutput()->Get();
}
} // end of namespace Statistics
} // end of namespace itk
#endif
|