File: itkBinaryStatisticsOpeningImageFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (139 lines) | stat: -rw-r--r-- 5,198 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkBinaryStatisticsOpeningImageFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __itkBinaryStatisticsOpeningImageFilter_txx
#define __itkBinaryStatisticsOpeningImageFilter_txx

#include "itkBinaryStatisticsOpeningImageFilter.h"
#include "itkProgressAccumulator.h"


namespace itk {

template<class TInputImage, class TFeatureImage>
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::BinaryStatisticsOpeningImageFilter()
{
  m_BackgroundValue = NumericTraits<OutputImagePixelType>::NonpositiveMin();
  m_ForegroundValue = NumericTraits<OutputImagePixelType>::max();
  m_FullyConnected = false;
  m_ReverseOrdering = false;
  m_Lambda = 0.0;
  m_Attribute = LabelObjectType::MEAN;
  this->SetNumberOfRequiredInputs(2);
}

template<class TInputImage, class TFeatureImage>
void 
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::GenerateInputRequestedRegion()
{
  // call the superclass' implementation of this method
  Superclass::GenerateInputRequestedRegion();
  
  // We need all the input.
  InputImagePointer input = const_cast<InputImageType *>( this->GetInput() );
  if( input )
    {
    input->SetRequestedRegion( input->GetLargestPossibleRegion() );
    }
}


template<class TInputImage, class TFeatureImage>
void 
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
  this->GetOutput()
    ->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}


template<class TInputImage, class TFeatureImage>
void
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::GenerateData()
{
  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter( this );

  // Allocate the output
  this->AllocateOutputs();
  
  typename LabelizerType::Pointer labelizer = LabelizerType::New();
  labelizer->SetInput( this->GetInput() );
  labelizer->SetInputForegroundValue( m_ForegroundValue );
  labelizer->SetOutputBackgroundValue( m_BackgroundValue );
  labelizer->SetFullyConnected( m_FullyConnected );
  labelizer->SetNumberOfThreads( this->GetNumberOfThreads() );
  progress->RegisterInternalFilter(labelizer, .3f);
  
  typename LabelObjectValuatorType::Pointer valuator = LabelObjectValuatorType::New();
  valuator->SetInput( labelizer->GetOutput() );
  valuator->SetFeatureImage( this->GetFeatureImage() );
  valuator->SetNumberOfThreads( this->GetNumberOfThreads() );
  valuator->SetComputeHistogram( false );
  if( m_Attribute == LabelObjectType::PERIMETER || m_Attribute == LabelObjectType::ROUNDNESS )
    {
    valuator->SetComputePerimeter( true );
    }
  if( m_Attribute == LabelObjectType::FERET_DIAMETER )
    {
    valuator->SetComputeFeretDiameter( true );
    }
  progress->RegisterInternalFilter(valuator, .3f);
  
  typename OpeningType::Pointer opening = OpeningType::New();
  opening->SetInput( valuator->GetOutput() );
  opening->SetLambda( m_Lambda );
  opening->SetReverseOrdering( m_ReverseOrdering );
  opening->SetAttribute( m_Attribute );
  opening->SetNumberOfThreads( this->GetNumberOfThreads() );
  progress->RegisterInternalFilter(opening, .2f);
  
  typename BinarizerType::Pointer binarizer = BinarizerType::New();
  binarizer->SetInput( opening->GetOutput() );
  binarizer->SetForegroundValue( m_ForegroundValue );
  binarizer->SetBackgroundValue( m_BackgroundValue );
  binarizer->SetBackgroundImage( this->GetInput() );
  binarizer->SetNumberOfThreads( this->GetNumberOfThreads() );
  progress->RegisterInternalFilter(binarizer, .2f);  

  binarizer->GraftOutput( this->GetOutput() );
  binarizer->Update();
  this->GraftOutput( binarizer->GetOutput() );
}


template<class TInputImage, class TFeatureImage>
void
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
  Superclass::PrintSelf(os, indent);

  os << indent << "FullyConnected: "  << m_FullyConnected << std::endl;
  os << indent << "BackgroundValue: "  << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue) << std::endl;
  os << indent << "ForegroundValue: "  << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ForegroundValue) << std::endl;
  os << indent << "Lambda: "  << m_Lambda << std::endl;
  os << indent << "ReverseOrdering: "  << m_ReverseOrdering << std::endl;
  os << indent << "Attribute: "  << LabelObjectType::GetNameFromAttribute(m_Attribute) << " (" << m_Attribute << ")" << std::endl;
}
  
}// end namespace itk
#endif