1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkBinaryStatisticsOpeningImageFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkBinaryStatisticsOpeningImageFilter_txx
#define __itkBinaryStatisticsOpeningImageFilter_txx
#include "itkBinaryStatisticsOpeningImageFilter.h"
#include "itkProgressAccumulator.h"
namespace itk {
template<class TInputImage, class TFeatureImage>
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::BinaryStatisticsOpeningImageFilter()
{
m_BackgroundValue = NumericTraits<OutputImagePixelType>::NonpositiveMin();
m_ForegroundValue = NumericTraits<OutputImagePixelType>::max();
m_FullyConnected = false;
m_ReverseOrdering = false;
m_Lambda = 0.0;
m_Attribute = LabelObjectType::MEAN;
this->SetNumberOfRequiredInputs(2);
}
template<class TInputImage, class TFeatureImage>
void
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::GenerateInputRequestedRegion()
{
// call the superclass' implementation of this method
Superclass::GenerateInputRequestedRegion();
// We need all the input.
InputImagePointer input = const_cast<InputImageType *>( this->GetInput() );
if( input )
{
input->SetRequestedRegion( input->GetLargestPossibleRegion() );
}
}
template<class TInputImage, class TFeatureImage>
void
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::EnlargeOutputRequestedRegion(DataObject *)
{
this->GetOutput()
->SetRequestedRegion( this->GetOutput()->GetLargestPossibleRegion() );
}
template<class TInputImage, class TFeatureImage>
void
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::GenerateData()
{
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter( this );
// Allocate the output
this->AllocateOutputs();
typename LabelizerType::Pointer labelizer = LabelizerType::New();
labelizer->SetInput( this->GetInput() );
labelizer->SetInputForegroundValue( m_ForegroundValue );
labelizer->SetOutputBackgroundValue( m_BackgroundValue );
labelizer->SetFullyConnected( m_FullyConnected );
labelizer->SetNumberOfThreads( this->GetNumberOfThreads() );
progress->RegisterInternalFilter(labelizer, .3f);
typename LabelObjectValuatorType::Pointer valuator = LabelObjectValuatorType::New();
valuator->SetInput( labelizer->GetOutput() );
valuator->SetFeatureImage( this->GetFeatureImage() );
valuator->SetNumberOfThreads( this->GetNumberOfThreads() );
valuator->SetComputeHistogram( false );
if( m_Attribute == LabelObjectType::PERIMETER || m_Attribute == LabelObjectType::ROUNDNESS )
{
valuator->SetComputePerimeter( true );
}
if( m_Attribute == LabelObjectType::FERET_DIAMETER )
{
valuator->SetComputeFeretDiameter( true );
}
progress->RegisterInternalFilter(valuator, .3f);
typename OpeningType::Pointer opening = OpeningType::New();
opening->SetInput( valuator->GetOutput() );
opening->SetLambda( m_Lambda );
opening->SetReverseOrdering( m_ReverseOrdering );
opening->SetAttribute( m_Attribute );
opening->SetNumberOfThreads( this->GetNumberOfThreads() );
progress->RegisterInternalFilter(opening, .2f);
typename BinarizerType::Pointer binarizer = BinarizerType::New();
binarizer->SetInput( opening->GetOutput() );
binarizer->SetForegroundValue( m_ForegroundValue );
binarizer->SetBackgroundValue( m_BackgroundValue );
binarizer->SetBackgroundImage( this->GetInput() );
binarizer->SetNumberOfThreads( this->GetNumberOfThreads() );
progress->RegisterInternalFilter(binarizer, .2f);
binarizer->GraftOutput( this->GetOutput() );
binarizer->Update();
this->GraftOutput( binarizer->GetOutput() );
}
template<class TInputImage, class TFeatureImage>
void
BinaryStatisticsOpeningImageFilter<TInputImage, TFeatureImage>
::PrintSelf(std::ostream &os, Indent indent) const
{
Superclass::PrintSelf(os, indent);
os << indent << "FullyConnected: " << m_FullyConnected << std::endl;
os << indent << "BackgroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_BackgroundValue) << std::endl;
os << indent << "ForegroundValue: " << static_cast<typename NumericTraits<OutputImagePixelType>::PrintType>(m_ForegroundValue) << std::endl;
os << indent << "Lambda: " << m_Lambda << std::endl;
os << indent << "ReverseOrdering: " << m_ReverseOrdering << std::endl;
os << indent << "Attribute: " << LabelObjectType::GetNameFromAttribute(m_Attribute) << " (" << m_Attribute << ")" << std::endl;
}
}// end namespace itk
#endif
|