1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkFFTWComplexToComplexImageFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
/**
*
* Attribution Notice. This research work was made possible by
* Grant Number R01 RR021885 (PI Simon K. Warfield, Ph.D.) from
* the National Center for Research Resources (NCRR), a component of the
* National Institutes of Health (NIH). Its contents are solely the
* responsibility of the authors and do not necessarily represent the
* official view of NCRR or NIH.
*
* This class was taken from the Insight Journal paper:
* http://insight-journal.org/midas/handle.php?handle=1926/326
*
*/
#ifndef __itkFFTWComplexToComplexImageFilter_txx
#define __itkFFTWComplexToComplexImageFilter_txx
#if defined(USE_FFTWF) || defined(USE_FFTWD)
#include "itkFFTWComplexToComplexImageFilter.h"
#include <iostream>
#include "itkIndent.h"
#include "itkMetaDataObject.h"
#include "itkImageRegionIterator.h"
namespace itk
{
/** TODO: There should be compile time type checks so that
if only USE_FFTWF is defined, then only floats are valid.
and if USE_FFTWD is defined, then only doubles are valid.
*/
#if defined(USE_FFTWF)
template <unsigned int NDimension>
void
FFTWComplexToComplexImageFilter<float,NDimension>::
GenerateData()
{
// get pointers to the input and output
typename InputImageType::ConstPointer inputPtr = this->GetInput();
typename OutputImageType::Pointer outputPtr = this->GetOutput();
if( !inputPtr || !outputPtr )
{
return;
}
const typename InputImageType::SizeType& outputSize
= outputPtr->GetLargestPossibleRegion().GetSize();
const unsigned int num_dims = outputPtr->GetImageDimension();
if( num_dims != outputPtr->GetImageDimension() )
{
return;
}
// allocate output buffer memory
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
std::complex<TPixel> *in =
const_cast<std::complex<TPixel> *>( inputPtr->GetBufferPointer() );
unsigned int total_size=1;
{
// This reinterpret_cast only makes sense if TPixel is float...
fftwf_complex *dptr = reinterpret_cast<fftwf_complex *>(in);
fftwf_complex *out = reinterpret_cast<fftwf_complex *>(outputPtr->GetBufferPointer());
int transformDirection = 1;
if( this->GetTransformDirection() == Superclass::INVERSE )
{
transformDirection = -1;
}
switch(num_dims)
{
case 1:
this->m_Plan = fftwf_plan_dft_1d(outputSize[0],
dptr,out,
transformDirection,FFTW_ESTIMATE);
total_size = outputSize[0];
break;
case 2:
this->m_Plan = fftwf_plan_dft_2d(outputSize[1],outputSize[0],
dptr,out,
transformDirection,FFTW_ESTIMATE);
total_size = outputSize[0] * outputSize[1];
break;
case 3:
this->m_Plan = fftwf_plan_dft_3d(outputSize[2],outputSize[1],outputSize[0],
dptr,out,
transformDirection,FFTW_ESTIMATE);
total_size = outputSize[0] * outputSize[1] * outputSize[2];
break;
default:
int *sizes = new int[num_dims];
for(unsigned int i = 0; i < num_dims; i++)
{
sizes[(num_dims - 1) - i] = outputSize[i];
total_size *= outputSize[i];
}
this->m_Plan = fftwf_plan_dft(num_dims,sizes,
dptr,out,transformDirection,FFTW_ESTIMATE);
delete [] sizes;
}
this->m_PlanComputed = true;
fftwf_execute(this->m_Plan);
}
typedef ImageRegionIterator< OutputImageType > IteratorType;
IteratorType it(outputPtr,outputPtr->GetLargestPossibleRegion());
//
// Normalize the output if backward transform
//
if( this->GetTransformDirection() == Superclass::INVERSE )
{
std::complex<TPixel> val;
while( !it.IsAtEnd() )
{
val = it.Value();
val /= total_size;
it.Set( val );
++it;
}
}
}
template <unsigned int NDimension>
bool
FFTWComplexToComplexImageFilter<float,NDimension >::
FullMatrix()
{
return false;
}
#endif // defined(USE_FFTWF)
#if defined(USE_FFTWD)
template <unsigned int NDimension>
void
FFTWComplexToComplexImageFilter<double,NDimension>::
GenerateData()
{
// get pointers to the input and output
typename InputImageType::ConstPointer inputPtr = this->GetInput();
typename OutputImageType::Pointer outputPtr = this->GetOutput();
if( !inputPtr || !outputPtr )
{
return;
}
const typename InputImageType::SizeType& outputSize
= outputPtr->GetLargestPossibleRegion().GetSize();
const unsigned int num_dims = outputPtr->GetImageDimension();
if( num_dims != outputPtr->GetImageDimension() )
{
return;
}
// allocate output buffer memory
outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
outputPtr->Allocate();
std::complex<TPixel> *in = const_cast<std::complex<TPixel> *>
(inputPtr->GetBufferPointer());
unsigned int total_size=1;
{
// This reinterpret_cast only makes sense if TPixel is double...
fftw_complex *dptr = reinterpret_cast<fftw_complex *>(in);
fftw_complex *out = reinterpret_cast<fftw_complex *>(outputPtr->GetBufferPointer());
int transformDirection = 1;
if( this->GetTransformDirection() == Superclass::INVERSE )
{
transformDirection = -1;
}
switch(num_dims)
{
case 1:
this->m_Plan = fftw_plan_dft_1d(outputSize[0],
dptr,out,
transformDirection,FFTW_ESTIMATE);
total_size = outputSize[0];
break;
case 2:
this->m_Plan = fftw_plan_dft_2d(outputSize[1],outputSize[0],
dptr,out,
transformDirection,FFTW_ESTIMATE);
total_size = outputSize[0] * outputSize[1];
break;
case 3:
this->m_Plan = fftw_plan_dft_3d(outputSize[2],outputSize[1],outputSize[0],
dptr,out,
transformDirection,FFTW_ESTIMATE);
total_size = outputSize[0] * outputSize[1] * outputSize[2];
break;
default:
int *sizes = new int[num_dims];
for(unsigned int i = 0; i < num_dims; i++)
{
sizes[(num_dims - 1) - i] = outputSize[i];
total_size *= outputSize[i];
}
this->m_Plan = fftw_plan_dft(num_dims,sizes,
dptr,out,transformDirection,FFTW_ESTIMATE);
delete [] sizes;
}
this->m_PlanComputed = true;
fftw_execute(this->m_Plan);
}
ImageRegionIterator<OutputImageType> it(outputPtr,outputPtr->GetLargestPossibleRegion());
//
// Normalize the output if backward transform
//
if( this->GetTransformDirection() == Superclass::INVERSE )
{
std::complex<TPixel> val;
while( !it.IsAtEnd() )
{
val = it.Value();
val /= total_size;
it.Set( val );
++it;
}
}
}
template <unsigned int NDimension>
bool
FFTWComplexToComplexImageFilter<double,NDimension>::
FullMatrix()
{
return false;
}
#endif // defined(USE_FFTWD)
}// namespace itk
#endif // defined(USE_FFTWF) || defined(USE_FFTWD)
#endif // _itkFFTWComplexToComplexImageFilter_txx
|