File: itkFFTWComplexToComplexImageFilter.txx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (272 lines) | stat: -rw-r--r-- 8,085 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkFFTWComplexToComplexImageFilter.txx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

/**
 *
 * Attribution Notice. This research work was made possible by
 * Grant Number R01 RR021885 (PI Simon K. Warfield, Ph.D.) from
 * the National Center for Research Resources (NCRR), a component of the
 * National Institutes of Health (NIH).  Its contents are solely the
 * responsibility of the authors and do not necessarily represent the
 * official view of NCRR or NIH.
 *
 * This class was taken from the Insight Journal paper:
 * http://insight-journal.org/midas/handle.php?handle=1926/326
 *
 */

#ifndef __itkFFTWComplexToComplexImageFilter_txx
#define __itkFFTWComplexToComplexImageFilter_txx

#if defined(USE_FFTWF) || defined(USE_FFTWD)

#include "itkFFTWComplexToComplexImageFilter.h"
#include <iostream>
#include "itkIndent.h"
#include "itkMetaDataObject.h"
#include "itkImageRegionIterator.h"

namespace itk
{
/** TODO:  There should be compile time type checks so that
           if only USE_FFTWF is defined, then only floats are valid.
           and if USE_FFTWD is defined, then only doubles are valid.
*/

#if defined(USE_FFTWF)
template <unsigned int NDimension>
void
FFTWComplexToComplexImageFilter<float,NDimension>::
GenerateData()
{
  // get pointers to the input and output
  typename InputImageType::ConstPointer  inputPtr  = this->GetInput();
  typename OutputImageType::Pointer      outputPtr = this->GetOutput();

  if( !inputPtr || !outputPtr )
    {
    return;
    }

  const typename InputImageType::SizeType&   outputSize
    = outputPtr->GetLargestPossibleRegion().GetSize();
  const unsigned int num_dims = outputPtr->GetImageDimension();

  if( num_dims != outputPtr->GetImageDimension() )
    {
    return;
    }

  // allocate output buffer memory
  outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
  outputPtr->Allocate();

  std::complex<TPixel> *in = 
    const_cast<std::complex<TPixel> *>( inputPtr->GetBufferPointer() );

  unsigned int total_size=1;

    {
    // This reinterpret_cast only makes sense if TPixel is float...
    fftwf_complex *dptr = reinterpret_cast<fftwf_complex *>(in);
    fftwf_complex *out = reinterpret_cast<fftwf_complex *>(outputPtr->GetBufferPointer());

    int transformDirection = 1;
    if( this->GetTransformDirection() == Superclass::INVERSE )
      {
      transformDirection = -1;
      }

    switch(num_dims)
      {
      case 1:
        this->m_Plan = fftwf_plan_dft_1d(outputSize[0],
                                      dptr,out,
                                      transformDirection,FFTW_ESTIMATE);
        total_size = outputSize[0];
        break;
      case 2:
        this->m_Plan = fftwf_plan_dft_2d(outputSize[1],outputSize[0],
                                      dptr,out,
                                      transformDirection,FFTW_ESTIMATE);
        total_size = outputSize[0] * outputSize[1];
        break;
      case 3:
        this->m_Plan = fftwf_plan_dft_3d(outputSize[2],outputSize[1],outputSize[0],
                                      dptr,out,
                                      transformDirection,FFTW_ESTIMATE);
        total_size = outputSize[0] * outputSize[1] * outputSize[2];
        break;
      default:
        int *sizes = new int[num_dims];
        for(unsigned int i = 0; i < num_dims; i++)
          {
          sizes[(num_dims - 1) - i] = outputSize[i];
          total_size *= outputSize[i];
          }
        this->m_Plan = fftwf_plan_dft(num_dims,sizes,
                                   dptr,out,transformDirection,FFTW_ESTIMATE);
        delete [] sizes;
      }
    this->m_PlanComputed = true;
    fftwf_execute(this->m_Plan);
    }

  typedef ImageRegionIterator< OutputImageType >   IteratorType;
  
  IteratorType it(outputPtr,outputPtr->GetLargestPossibleRegion());

  //
  // Normalize the output if backward transform
  //
  if( this->GetTransformDirection() == Superclass::INVERSE )
    {
    std::complex<TPixel> val;
    while( !it.IsAtEnd() )
      {
      val = it.Value();
      val /= total_size;
      it.Set( val );
      ++it;
      }
    }
}


template <unsigned int NDimension>
bool
FFTWComplexToComplexImageFilter<float,NDimension >::
FullMatrix()
{
  return false;
}

#endif // defined(USE_FFTWF)

#if defined(USE_FFTWD)
template <unsigned int NDimension>
void
FFTWComplexToComplexImageFilter<double,NDimension>::
GenerateData()
{
  // get pointers to the input and output
  typename InputImageType::ConstPointer  inputPtr  = this->GetInput();
  typename OutputImageType::Pointer      outputPtr = this->GetOutput();

  if( !inputPtr || !outputPtr )
    {
    return;
    }

  const typename InputImageType::SizeType&   outputSize
    = outputPtr->GetLargestPossibleRegion().GetSize();

  const unsigned int num_dims = outputPtr->GetImageDimension();

  if( num_dims != outputPtr->GetImageDimension() )
    {
    return;
    }

  // allocate output buffer memory
  outputPtr->SetBufferedRegion( outputPtr->GetRequestedRegion() );
  outputPtr->Allocate();

  std::complex<TPixel> *in = const_cast<std::complex<TPixel> *>
    (inputPtr->GetBufferPointer());

  unsigned int total_size=1;

    {
    // This reinterpret_cast only makes sense if TPixel is double...
    fftw_complex *dptr = reinterpret_cast<fftw_complex *>(in);
    fftw_complex *out  = reinterpret_cast<fftw_complex *>(outputPtr->GetBufferPointer());

    int transformDirection = 1;
    if( this->GetTransformDirection() == Superclass::INVERSE )
      {
      transformDirection = -1;
      }

    switch(num_dims)
      {
      case 1:
        this->m_Plan = fftw_plan_dft_1d(outputSize[0],
                                      dptr,out,
                                      transformDirection,FFTW_ESTIMATE);
        total_size = outputSize[0];
        break;
      case 2:
        this->m_Plan = fftw_plan_dft_2d(outputSize[1],outputSize[0],
                                      dptr,out,
                                      transformDirection,FFTW_ESTIMATE);
        total_size = outputSize[0] * outputSize[1];
        break;
      case 3:
        this->m_Plan = fftw_plan_dft_3d(outputSize[2],outputSize[1],outputSize[0],
                                      dptr,out,
                                      transformDirection,FFTW_ESTIMATE);
        total_size = outputSize[0] * outputSize[1] * outputSize[2];
        break;
      default:
        int *sizes = new int[num_dims];
        for(unsigned int i = 0; i < num_dims; i++)
          {
          sizes[(num_dims - 1) - i] = outputSize[i];
          total_size *= outputSize[i];
          }
        this->m_Plan = fftw_plan_dft(num_dims,sizes,
                                   dptr,out,transformDirection,FFTW_ESTIMATE);
        delete [] sizes;
      }
    this->m_PlanComputed = true;
    fftw_execute(this->m_Plan);
    }

  ImageRegionIterator<OutputImageType> it(outputPtr,outputPtr->GetLargestPossibleRegion());

  //
  // Normalize the output if backward transform
  //
  if( this->GetTransformDirection() == Superclass::INVERSE )
    {
    std::complex<TPixel> val;
    while( !it.IsAtEnd() )
      {
      val = it.Value();
      val /= total_size;
      it.Set( val );
      ++it;
      }
    }
}

template <unsigned int NDimension>
bool
FFTWComplexToComplexImageFilter<double,NDimension>::
FullMatrix()
{
  return false;
}

#endif // defined(USE_FFTWD)

}// namespace itk

#endif // defined(USE_FFTWF) || defined(USE_FFTWD)

#endif // _itkFFTWComplexToComplexImageFilter_txx