1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkMiniPipelineSeparableImageFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkMiniPipelineSeparableImageFilter_txx
#define __itkMiniPipelineSeparableImageFilter_txx
#include "itkMiniPipelineSeparableImageFilter.h"
#include "itkProgressAccumulator.h"
namespace itk {
template <class TInputImage, class TOutputImage, class TFilter>
MiniPipelineSeparableImageFilter<TInputImage, TOutputImage, TFilter>
::MiniPipelineSeparableImageFilter()
{
// create the pipeline
for( unsigned i = 0; i < ImageDimension; i++ )
{
m_Filters[i] = FilterType::New();
m_Filters[i]->ReleaseDataFlagOn();
if( i > 0 )
{
m_Filters[i]->SetInput( m_Filters[i-1]->GetOutput() );
}
}
m_Cast = CastType::New();
m_Cast->SetInput( m_Filters[ImageDimension-1]->GetOutput() );
m_Cast->SetInPlace( true );
}
template<class TInputImage, class TOutputImage, class TFilter>
void
MiniPipelineSeparableImageFilter<TInputImage, TOutputImage, TFilter>
::Modified() const
{
Superclass::Modified();
for (unsigned i = 0; i < ImageDimension; i++)
{
m_Filters[i]->Modified();
}
m_Cast->Modified();
}
template<class TInputImage, class TOutputImage, class TFilter>
void
MiniPipelineSeparableImageFilter<TInputImage, TOutputImage, TFilter>
::SetNumberOfThreads( int nb )
{
Superclass::SetNumberOfThreads( nb );
for (unsigned i = 0; i < ImageDimension; i++)
{
m_Filters[i]->SetNumberOfThreads( nb );
}
m_Cast->SetNumberOfThreads( nb );
}
template <class TInputImage, class TOutputImage, class TFilter>
void
MiniPipelineSeparableImageFilter<TInputImage, TOutputImage, TFilter>
::SetRadius( const RadiusType & radius )
{
Superclass::SetRadius( radius );
// set up the kernels
for (unsigned i = 0; i< ImageDimension; i++)
{
RadiusType rad;
rad.Fill(0);
rad[i] = radius[i];
m_Filters[i]->SetRadius( rad );
}
}
template <class TInputImage, class TOutputImage, class TFilter>
void
MiniPipelineSeparableImageFilter<TInputImage, TOutputImage, TFilter>
::GenerateData()
{
this->AllocateOutputs();
// set up the pipeline
m_Filters[0]->SetInput( this->GetInput() );
// Create a process accumulator for tracking the progress of this minipipeline
ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
progress->SetMiniPipelineFilter(this);
for( unsigned i = 0; i< ImageDimension; i++ )
{
progress->RegisterInternalFilter( m_Filters[i], 1.0/ImageDimension );
}
m_Cast->GraftOutput( this->GetOutput() );
m_Cast->Update();
this->GraftOutput( m_Cast->GetOutput() );
}
}
#endif
|