1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkStatisticsLabelMapFilter.txx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkStatisticsLabelMapFilter_txx
#define __itkStatisticsLabelMapFilter_txx
#include "itkStatisticsLabelMapFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkProgressReporter.h"
#include "vnl/algo/vnl_real_eigensystem.h"
#include "vnl/algo/vnl_symmetric_eigensystem.h"
namespace itk {
template <class TImage, class TFeatureImage>
StatisticsLabelMapFilter<TImage, TFeatureImage>
::StatisticsLabelMapFilter()
{
m_NumberOfBins = 128;
m_ComputeHistogram = true;
this->SetNumberOfRequiredInputs(2);
}
template <class TImage, class TFeatureImage>
void
StatisticsLabelMapFilter<TImage, TFeatureImage>
::BeforeThreadedGenerateData()
{
Superclass::BeforeThreadedGenerateData();
// get the min and max of the feature image, to use those value as the bounds of our
// histograms
typedef MinimumMaximumImageCalculator< FeatureImageType > MinMaxCalculatorType;
typename MinMaxCalculatorType::Pointer minMax = MinMaxCalculatorType::New();
minMax->SetImage( this->GetFeatureImage() );
minMax->Compute();
m_Minimum = minMax->GetMinimum();
m_Maximum = minMax->GetMaximum();
}
template <class TImage, class TFeatureImage>
void
StatisticsLabelMapFilter<TImage, TFeatureImage>
::ThreadedProcessLabelObject( LabelObjectType * labelObject )
{
Superclass::ThreadedProcessLabelObject( labelObject );
ImageType * output = this->GetOutput();
const FeatureImageType * featureImage = this->GetFeatureImage();
typedef typename LabelObjectType::HistogramType HistogramType;
typename HistogramType::SizeType histogramSize;
#ifdef ITK_USE_REVIEW_STATISTICS //http://www.itk.org/Wiki/Proposals:Refactoring_Statistics_Framework_2007_Migration_Users_Guide
histogramSize.SetSize(1);
#endif
histogramSize.Fill( m_NumberOfBins );
typename HistogramType::MeasurementVectorType featureImageMin;
#ifdef ITK_USE_REVIEW_STATISTICS //http://www.itk.org/Wiki/Proposals:Refactoring_Statistics_Framework_2007_Migration_Users_Guide
featureImageMin.SetSize(1);
#endif
featureImageMin.Fill( m_Minimum );
typename HistogramType::MeasurementVectorType featureImageMax;
#ifdef ITK_USE_REVIEW_STATISTICS //http://www.itk.org/Wiki/Proposals:Refactoring_Statistics_Framework_2007_Migration_Users_Guide
featureImageMax.SetSize(1);
#endif
featureImageMax.Fill( m_Maximum );
typename HistogramType::Pointer histogram = HistogramType::New();
#ifdef ITK_USE_REVIEW_STATISTICS //http://www.itk.org/Wiki/Proposals:Refactoring_Statistics_Framework_2007_Migration_Users_Guide
histogram->SetMeasurementVectorSize(1);
#endif
histogram->SetClipBinsAtEnds( false );
histogram->Initialize( histogramSize, featureImageMin, featureImageMax );
typename LabelObjectType::LineContainerType::const_iterator lit;
typename LabelObjectType::LineContainerType & lineContainer = labelObject->GetLineContainer();
FeatureImagePixelType min = NumericTraits< FeatureImagePixelType >::max();
FeatureImagePixelType max = NumericTraits< FeatureImagePixelType >::NonpositiveMin();
double sum = 0;
double sum2 = 0;
double sum3 = 0;
double sum4 = 0;
IndexType minIdx;
minIdx.Fill( 0 );
IndexType maxIdx;
maxIdx.Fill( 0 );
PointType centerOfGravity;
centerOfGravity.Fill( 0 );
MatrixType centralMoments;
centralMoments.Fill( 0 );
MatrixType principalAxes;
principalAxes.Fill( 0 );
VectorType principalMoments;
principalMoments.Fill( 0 );
// iterate over all the lines
for( lit = lineContainer.begin(); lit != lineContainer.end(); lit++ )
{
const IndexType & firstIdx = lit->GetIndex();
unsigned long length = lit->GetLength();
typename HistogramType::MeasurementVectorType mv;
#ifdef ITK_USE_REVIEW_STATISTICS //http://www.itk.org/Wiki/Proposals:Refactoring_Statistics_Framework_2007_Migration_Users_Guide
mv.SetSize(1);
#endif
long endIdx0 = firstIdx[0] + length;
for( IndexType idx = firstIdx; idx[0]<endIdx0; idx[0]++)
{
const FeatureImagePixelType & v = featureImage->GetPixel( idx );
mv[0] = v;
histogram->IncreaseFrequency( mv, 1 );
// update min and max
if( v <= min )
{
min = v;
minIdx = idx;
}
if( v >= max )
{
max = v;
maxIdx = idx;
}
//increase the sums
sum += v;
sum2 += vcl_pow( (double)v, 2 );
sum3 += vcl_pow( (double)v, 3 );
sum4 += vcl_pow( (double)v, 4 );
// moments
PointType physicalPosition;
output->TransformIndexToPhysicalPoint(idx, physicalPosition);
for(unsigned int i=0; i<ImageDimension; i++)
{
centerOfGravity[i] += physicalPosition[i] * v;
centralMoments[i][i] += v * physicalPosition[i] * physicalPosition[i];
for(unsigned int j=i+1; j<ImageDimension; j++)
{
double weight = v * physicalPosition[i] * physicalPosition[j];
centralMoments[i][j] += weight;
centralMoments[j][i] += weight;
}
}
}
}
// final computations
#ifdef ITK_USE_REVIEW_STATISTICS //http://www.itk.org/Wiki/Proposals:Refactoring_Statistics_Framework_2007_Migration_Users_Guide
const typename HistogramType::AbsoluteFrequencyType & totalFreq = histogram->GetTotalFrequency();
#else
const typename HistogramType::FrequencyType & totalFreq = histogram->GetTotalFrequency();
#endif
double mean = sum / totalFreq;
double variance = ( sum2 - ( vcl_pow( sum, 2 ) / totalFreq ) ) / ( totalFreq - 1 );
double sigma = vcl_sqrt( variance );
double mean2 = mean * mean;
double skewness = ( ( sum3 - 3.0 * mean * sum2) / totalFreq + 2.0 * mean * mean2 ) / ( variance * sigma );
double kurtosis = ( ( sum4 - 4.0 * mean * sum3 + 6.0 * mean2 * sum2) / totalFreq - 3.0 * mean2 * mean2 ) / ( variance * variance ) - 3.0;
// the median
double median = 0;
double count = 0; // will not be fully set, so do not use later !
for( unsigned long i=0;
i<histogram->Size();
i++)
{
count += histogram->GetFrequency( i );
if( count >= ( totalFreq / 2 ) )
{
median = histogram->GetMeasurementVector( i )[0];
break;
}
}
double elongation = 0;
double flatness = 0;
if( sum != 0 )
{
// Normalize using the total mass
for(unsigned int i=0; i<ImageDimension; i++)
{
centerOfGravity[i] /= sum;
for(unsigned int j=0; j<ImageDimension; j++)
{
centralMoments[i][j] /= sum;
}
}
// Center the second order moments
for(unsigned int i=0; i<ImageDimension; i++)
{
for(unsigned int j=0; j<ImageDimension; j++)
{
centralMoments[i][j] -= centerOfGravity[i] * centerOfGravity[j];
}
}
// the normalized second order central moment of a pixel
for(unsigned int i=0; i<ImageDimension; i++)
{
centralMoments[i][i] += output->GetSpacing()[i] * output->GetSpacing()[i] / 12.0;
}
// Compute principal moments and axes
vnl_symmetric_eigensystem<double> eigen( centralMoments.GetVnlMatrix() );
vnl_diag_matrix<double> pm = eigen.D;
for(unsigned int i=0; i<ImageDimension; i++)
{
// principalMoments[i] = 4 * vcl_sqrt( pm(i,i) );
principalMoments[i] = pm(i,i);
}
principalAxes = eigen.V.transpose();
// Add a final reflection if needed for a proper rotation,
// by multiplying the last row by the determinant
vnl_real_eigensystem eigenrot( principalAxes.GetVnlMatrix() );
vnl_diag_matrix< vcl_complex<double> > eigenval = eigenrot.D;
vcl_complex<double> det( 1.0, 0.0 );
for(unsigned int i=0; i<ImageDimension; i++)
{
det *= eigenval( i, i );
}
for(unsigned int i=0; i<ImageDimension; i++)
{
principalAxes[ ImageDimension-1 ][i] *= std::real( det );
}
if( ImageDimension < 2 )
{
elongation = 1;
flatness = 1;
}
else if( principalMoments[0] != 0 )
{
// elongation = principalMoments[ImageDimension-1] / principalMoments[0];
elongation = vcl_sqrt(principalMoments[ImageDimension-1] / principalMoments[ImageDimension-2]);
flatness = vcl_sqrt(principalMoments[1] / principalMoments[0]);
}
}
else
{
// can't compute anything in that case - just set everything to a default value
// Normalize using the total mass
for(unsigned int i=0; i<ImageDimension; i++)
{
centerOfGravity[i] = 0;
principalMoments[i] = 0;
for(unsigned int j=0; j<ImageDimension; j++)
{
principalAxes[i][j] = 0;
}
}
}
// finally put the values in the label object
labelObject->SetMinimum( (double)min );
labelObject->SetMaximum( (double)max );
labelObject->SetSum( sum );
labelObject->SetMean( mean );
labelObject->SetMedian( median );
labelObject->SetVariance( variance );
labelObject->SetSigma( sigma );
labelObject->SetMinimumIndex( minIdx );
labelObject->SetMaximumIndex( maxIdx );
labelObject->SetCenterOfGravity( centerOfGravity );
labelObject->SetPrincipalAxes( principalAxes );
labelObject->SetFlatness( flatness );
labelObject->SetPrincipalMoments( principalMoments );
// labelObject->SetCentralMoments( centralMoments );
labelObject->SetSkewness( skewness );
labelObject->SetKurtosis( kurtosis );
labelObject->SetElongation( elongation );
if( m_ComputeHistogram )
{
labelObject->SetHistogram( histogram );
}
}
template <class TImage, class TFeatureImage>
void
StatisticsLabelMapFilter<TImage, TFeatureImage>
::PrintSelf(std::ostream& os, Indent indent) const
{
Superclass::PrintSelf(os,indent);
os << indent << "ComputeHistogram: " << m_ComputeHistogram << std::endl;
os << indent << "NumberOfBins: " << m_NumberOfBins << std::endl;
}
}// end namespace itk
#endif
|