1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: DerivativeImageFilter.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {DerivativeImageFilterFloatOutput.mhd}
// OUTPUTS: {DerivativeImageFilterOutput.png}
// 1 0
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The \doxygen{DerivativeImageFilter} is used for computing the partial
// derivative of an image, the derivative of an image along a particular axial
// direction.
//
// \index{itk::DerivativeImageFilter}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The header file corresponding to this filter should be included first.
//
// \index{itk::DerivativeImageFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkDerivativeImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 6 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile normalizedOutputImageFile ";
std::cerr << " derivativeOrder direction" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Next, the pixel types for the input and output images must be defined and, with
// them, the image types can be instantiated. Note that it is important to
// select a signed type for the image, since the values of the derivatives
// will be positive as well as negative.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
typedef float OutputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// Using the image types, it is now possible to define the filter type
// and create the filter object.
//
// \index{itk::DerivativeImageFilter!instantiation}
// \index{itk::DerivativeImageFilter!New()}
// \index{itk::DerivativeImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::DerivativeImageFilter<
InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The order of the derivative is selected with the \code{SetOrder()}
// method. The direction along which the derivative will be computed is
// selected with the \code{SetDirection()} method.
//
// \index{itk::DerivativeImageFilter!SetOrder()}
// \index{itk::DerivativeImageFilter!SetDirection()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetOrder( atoi( argv[4] ) );
filter->SetDirection( atoi( argv[5] ) );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input to the filter can be taken from any other filter, for example
// a reader. The output can be passed down the pipeline to other filters,
// for example, a writer. An update call on any downstream filter will
// trigger the execution of the derivative filter.
//
// \index{itk::DerivativeImageFilter!SetInput()}
// \index{itk::DerivativeImageFilter!GetOutput()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetInput( reader->GetOutput() );
writer->SetInput( filter->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySlice.eps}
// \includegraphics[width=0.44\textwidth]{DerivativeImageFilterOutput.eps}
// \itkcaption[Effect of the Derivative filter.]{Effect of the Derivative filter
// on a slice from a MRI proton density brain image.}
// \label{fig:DerivativeImageFilterOutput}
// \end{figure}
//
// Figure \ref{fig:DerivativeImageFilterOutput} illustrates the effect of
// the DerivativeImageFilter on a slice of MRI brain image. The derivative
// is taken along the $x$ direction. The sensitivity to noise in the image
// is evident from this result.
//
// Software Guide : EndLatex
typedef itk::Image< unsigned char, Dimension > WriteImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType,
WriteImageType > NormalizeFilterType;
typedef itk::ImageFileWriter< WriteImageType > NormalizedWriterType;
NormalizeFilterType::Pointer normalizer = NormalizeFilterType::New();
NormalizedWriterType::Pointer normalizedWriter = NormalizedWriterType::New();
normalizer->SetInput( filter->GetOutput() );
normalizedWriter->SetInput( normalizer->GetOutput() );
normalizer->SetOutputMinimum( 0 );
normalizer->SetOutputMaximum( 255 );
normalizedWriter->SetFileName( argv[3] );
normalizedWriter->Update();
return EXIT_SUCCESS;
}
|