File: FFTDirectInverse2.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (139 lines) | stat: -rw-r--r-- 4,890 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    FFTDirectInverse2.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif

#include "itkConfigure.h"

//
// This example is based on the on that was contributed by Stephan in the users list
//
//     http://public.kitware.com/pipermail/insight-users/2005-June/013482.html
//
//

// Software Guide : BeginLatex
//
// This example illustrates how to compute the direct Fourier transform
// followed by the inverse Fourier transform using the FFTW library.
//
// Software Guide : EndLatex

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkFFTWRealToComplexConjugateImageFilter.h"
#include "itkFFTWComplexConjugateToRealImageFilter.h"
#include "itkFlipImageFilter.h"

#if !defined(USE_FFTWF)
//#error "This example only works when single precision FFTW is used
//Changing WorkPixeltype to double and changing this conditional to USE_FFTWD
//will also work.
#endif

int main( int argc, char * argv[] )
{
  if( argc != 3 )
    {
    std::cerr << "Usage: " << argv[0] << " input output" << std::endl;
    return EXIT_FAILURE;
    }

// Software Guide : BeginLatex
//
// First we set up the types of the input and output images.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
  const unsigned int      Dimension = 2;
  //  typedef unsigned char   OutputPixelType;
  typedef unsigned short  OutputPixelType;
  typedef float           WorkPixelType;

  typedef itk::Image< WorkPixelType,  Dimension > InputImageType;
  typedef itk::Image< WorkPixelType,  Dimension > WorkImageType;
  typedef itk::Image< OutputPixelType,Dimension > OutputImageType;
// Software Guide : EndCodeSnippet

// File handling
  typedef itk::ImageFileReader< InputImageType  > ReaderType;
  typedef itk::ImageFileWriter< OutputImageType > WriterType;

  ReaderType::Pointer inputreader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  inputreader->SetFileName( argv[1] );
  writer->SetFileName( argv[2] );

// Read the image and get its size
  inputreader->Update();

// Forward FFT filter
  typedef itk::FFTWRealToComplexConjugateImageFilter <
                                              WorkPixelType,
                                              Dimension
                                                      > FFTFilterType;

  FFTFilterType::Pointer fftinput = FFTFilterType::New();
  fftinput->SetInput( inputreader->GetOutput() );
  fftinput->Update();

// This is the output type from the FFT filters
  typedef FFTFilterType::OutputImageType ComplexImageType;

// Do the inverse transform = forward transform + flip all axes
  typedef itk::FFTWComplexConjugateToRealImageFilter <
                                              WorkPixelType,
                                              Dimension > invFFTFilterType;

  invFFTFilterType::Pointer fftoutput = invFFTFilterType::New();
  fftoutput->SetInput(fftinput->GetOutput()); // try to recover the input image
  fftoutput->Update();

  // Rescale the output to suit the output image type
  typedef itk::RescaleIntensityImageFilter<
                                      WorkImageType,
                                      OutputImageType > RescaleFilterType;

  RescaleFilterType::Pointer intensityrescaler = RescaleFilterType::New();

  std::cout << fftoutput->GetOutput()->GetLargestPossibleRegion().GetSize() << std::endl;
  intensityrescaler->SetInput( fftoutput->GetOutput() );

  intensityrescaler->SetOutputMinimum(  0  );
  intensityrescaler->SetOutputMaximum( 65535 );

  // Write the output
  writer->SetInput(intensityrescaler->GetOutput());
  writer->Update();

  //DEBUG: std::cout << "inputreader "<<inputreader->GetOutput()->GetLargestPossibleRegion().GetSize() << std::endl;
  //DEBUG: std::cout << "fftinput " <<fftinput->GetOutput()->GetLargestPossibleRegion().GetSize() << std::endl;
  //DEBUG: std::cout << "fftoutput " <<fftoutput->GetOutput()->GetLargestPossibleRegion().GetSize() << std::endl;
  //DEBUG: std::cout << "intensityrescaller " <<intensityrescaler->GetOutput()->GetLargestPossibleRegion().GetSize() << std::endl;
  return EXIT_SUCCESS;

}