1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: RGBGradientAnisotropicDiffusionImageFilter.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif
// Software Guide : BeginCommandLineArgs
// INPUTS: {VisibleWomanHeadSlice.png}
// OUTPUTS: {RGBGradientAnisotropicDiffusionImageFilterOutput.png}
// 20 0.125
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The vector anisotropic diffusion approach can equally well be applied to
// color images. As in the vector case, each RGB component is diffused
// independently. The following example illustrates the use of the Vector
// curvature anisotropic diffusion filter on an image with
// \doxygen{RGBPixel} type.
//
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!RGB Images}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The first step required to use this filter is to include its header file.
//
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVectorGradientAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Also the headers for \code{Image} and \code{RGBPixel} type are required.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkRGBPixel.h"
#include "itkImage.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// It is desirable to perform the computation on the RGB image using
// \code{float} representation. However for input and output purposes
// \code{unsigned char} RGB components are commonly used. It is necessary to
// cast the type of color components along the pipeline before writing them
// to a file. The \doxygen{VectorCastImageFilter} is used to achieve this
// goal.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkVectorCastImageFilter.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 5 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputRGBImageFile outputRGBImageFile ";
std::cerr << "numberOfIterations timeStep " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The image type is defined using the pixel type and the dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RGBPixel< float > InputPixelType;
typedef itk::Image< InputPixelType, 2 > InputImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter type is now instantiated and a filter object is created by the
// \code{New()} method.
//
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!instantiation}
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!New()}
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::VectorGradientAnisotropicDiffusionImageFilter<
InputImageType, InputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input image can be obtained from the output of another
// filter. Here, an image reader is used as source.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileReader< InputImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
filter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
const unsigned int numberOfIterations = atoi( argv[3] );
const double timeStep = atof( argv[4] );
// Software Guide : BeginLatex
//
// This filter requires two parameters, the number of iterations to be
// performed and the time step used in the computation of the level set
// evolution. These parameters are set using the methods
// \code{SetNumberOfIterations()} and \code{SetTimeStep()} respectively.
// The filter can be executed by invoking \code{Update()}.
//
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!Update()}
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetTimeStep()}
// \index{itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter!SetNumberOfIterations()}
// \index{SetTimeStep()!itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
// \index{SetNumberOfIterations()!itk::Vector\-Gradient\-Anisotropic\-Diffusion\-Image\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNumberOfIterations( numberOfIterations );
filter->SetTimeStep( timeStep );
filter->SetConductanceParameter(1.0);
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filter output is now cast to \code{unsigned char} RGB components by
// using the \doxygen{VectorCastImageFilter}.
//
// \index{itk::VectorCastImageFilter!instantiation}
// \index{itk::VectorCastImageFilter!New()}
// \index{itk::VectorCastImageFilter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RGBPixel< unsigned char > WritePixelType;
typedef itk::Image< WritePixelType, 2 > WriteImageType;
typedef itk::VectorCastImageFilter<
InputImageType, WriteImageType > CasterType;
CasterType::Pointer caster = CasterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the writer type can be instantiated. One writer is created and
// connected to the output of the cast filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileWriter< WriteImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
caster->SetInput( filter->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->SetFileName( argv[2] );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{VisibleWomanHeadSlice.eps}
// \includegraphics[width=0.44\textwidth]{RGBGradientAnisotropicDiffusionImageFilterOutput.eps}
// \itkcaption[VectorGradientAnisotropicDiffusionImageFilter on RGB] {Effect of
// the VectorGradientAnisotropicDiffusionImageFilter on a RGB image from a
// cryogenic section of the Visible Woman data set.}
// \label{fig:RGBVectorGradientAnisotropicDiffusionImageFilterInputOutput}
// \end{figure}
//
// Figure
// \ref{fig:RGBVectorGradientAnisotropicDiffusionImageFilterInputOutput}
// illustrates the effect of this filter on a RGB image from a cryogenic
// section of the Visible Woman data set. In this example the filter was
// run with a time step of $0.125$, and $20$ iterations. The input image
// has $570 \times 670$ pixels and the processing took $4$ minutes on a
// Pentium 4 2Ghz.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|