1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: ResampleImageFilter8.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif
// Software Guide : BeginLatex
//
// The following example illustrates how to use the
// \doxygen{WindowedSincInterpolateImageFunction} for resampling an image.
// This interpolator is in theory the best possible interpolator for
// reconstructing the continous values of a discrete image. In the spectral
// domain, this interpolator is performing the task of masking the central
// part of the spectrum of the sampled image, that in principle corresponds to
// the spectrumn of the continuous image before it was sampled into a discrete
// one. In this particular case an \doxygen{AffineTransform} is used to map
// the input space into the output space.
//
// \index{itk::AffineTransform!resampling}
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkWindowedSincInterpolateImageFunction.h"
// Software Guide : BeginLatex
//
// The header of the affine transform is included below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkAffineTransform.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile outputImageFile degrees" << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef unsigned char InputPixelType;
typedef unsigned char OutputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
const double angleInDegrees = atof( argv[3] );
// Software Guide : BeginLatex
//
// The Resampling filter is instantiated and created just like in previous examples.
// The Transform is instantiated and connected to the resampling filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ResampleImageFilter<
InputImageType, OutputImageType > FilterType;
FilterType::Pointer filter = FilterType::New();
typedef itk::AffineTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
filter->SetTransform( transform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The salient feature of this example is the use of the
// \doxygen{WindowedSincInterpolateImageFunction}, which uses a truncated
// \emph{sinc} function in order to interpolate the resampled image.
//
// There is a close relationship between operations performed in the spatial
// domain and those applied in the spectral doman. For example, the action
// of truncating the \emph{sinc} function with a box function in the spatial
// domain will correspond to convolving its spectrum with the spectrum of a
// box function. Since the box function spectrum has an infinite support on
// the spectral domain, the result of the convolution will also have an
// infinite support on the spectral domain. Due to this effects, it is
// desirable to truncate the \emph{sinc} function by using a window that has
// a limited spectral support. Many different windows have been developed to
// this end in the domain of image processing. Among the most commonly used
// we have the \textbf{Hamming} window. We use here a Hamming window in
// order to define the truncation of the sinc function. The window is
// instantiated and its type is used in the instantiation of the
// WindowedSinc interpolator. The size of the window is one of the critical
// parameters of this class. The size must be decided at compilation time by
// using a \code{const integer} or an \code{enum}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ConstantBoundaryCondition< InputImageType > BoundaryConditionType;
const unsigned int WindowRadius = 5;
typedef itk::Function::HammingWindowFunction<WindowRadius> WindowFunctionType;
typedef itk::WindowedSincInterpolateImageFunction<
InputImageType,
WindowRadius,
WindowFunctionType,
BoundaryConditionType,
double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
filter->SetInterpolator( interpolator );
filter->SetDefaultPixelValue( 100 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The parameters of the output image are taken from the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
reader->Update();
const InputImageType::SpacingType&
spacing = reader->GetOutput()->GetSpacing();
const InputImageType::PointType&
origin = reader->GetOutput()->GetOrigin();
const InputImageType::DirectionType&
direction = reader->GetOutput()->GetDirection();
InputImageType::SizeType size =
reader->GetOutput()->GetLargestPossibleRegion().GetSize();
filter->SetOutputOrigin( origin );
filter->SetOutputSpacing( spacing );
filter->SetOutputDirection( direction );
filter->SetSize( size );
// Software Guide : EndCodeSnippet
filter->SetInput( reader->GetOutput() );
writer->SetInput( filter->GetOutput() );
TransformType::OutputVectorType translation1;
const double imageCenterX = origin[0] + spacing[0] * size[0] / 2.0;
const double imageCenterY = origin[1] + spacing[1] * size[1] / 2.0;
translation1[0] = -imageCenterX;
translation1[1] = -imageCenterY;
transform->Translate( translation1 );
std::cout << "imageCenterX = " << imageCenterX << std::endl;
std::cout << "imageCenterY = " << imageCenterY << std::endl;
const double degreesToRadians = vcl_atan(1.0) / 45.0;
const double angle = angleInDegrees * degreesToRadians;
transform->Rotate2D( -angle, false );
TransformType::OutputVectorType translation2;
translation2[0] = imageCenterX;
translation2[1] = imageCenterY;
transform->Translate( translation2, false );
// Software Guide : BeginLatex
//
// The output of the resampling filter is connected to a writer and the
// execution of the pipeline is triggered by a writer update.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception catched !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|