1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: FuzzyConnectednessImageFilter.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifdef _MSC_VER
#pragma warning ( disable : 4786 )
#endif
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{SimpleFuzzyConnectednessScalarImageFilter}. This filter computes an
// affinity map from a seed point provided by the user. This affinity map
// indicates for every pixels how homogeneous is the path that will link it to
// the seed point.
//
// Please note that the Fuzzy Connectedness algorithm is covered by a patent
// \cite{Udupa1998}. For this reason the current example is located in the
// \texttt{Examples/Patented} subdirectory.
//
// In order to use this algorithm we should first include the header files of
// the filter and the image class.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkSimpleFuzzyConnectednessScalarImageFilter.h"
#include "itkImage.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the FuzzyConnectednessImageFilter requires an estimation of the
// gray level mean and variance for the region to be segmented, we use here the
// \doxygen{ConfidenceConnectedImageFilter} as a preprocessor that produces a
// rough segmentation and estimates from it the values of the mean and the
// variance.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkConfidenceConnectedImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
int main( int argc, char *argv[] )
{
if( argc < 7 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage outputAffinityMap " << std::endl;
std::cerr << " seedX seedY multiplier " << std::endl;
return 1;
}
// Software Guide : BeginLatex
//
// Next, we declare the pixel type and image dimension and
// specify the image type to be used as input.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InputPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Fuzzy connectedness computes first the affinity map and then thresholds
// its values in order to get a binary image as output. The type of the
// binary image is provided as the second template parameter of the filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char BinaryPixelType;
typedef itk::Image< BinaryPixelType, Dimension > BinaryImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Confidence connected filter type is instantiated using the input
// image type and a binary image type for output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ConfidenceConnectedImageFilter<
InputImageType,
BinaryImageType
> ConfidenceConnectedFilterType;
ConfidenceConnectedFilterType::Pointer confidenceConnectedFilter =
ConfidenceConnectedFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The fuzzy segmentation filter type is instantiated here using the input
// and binary image types as template parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::SimpleFuzzyConnectednessScalarImageFilter<
InputImageType,
BinaryImageType
> FuzzySegmentationFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The fuzzy connectedness segmentation filter is created by invoking the
// \code{New()} method and assigning the result to a
// \doxygen{SmartPointer}.
//
// \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!New()}
// \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FuzzySegmentationFilterType::Pointer fuzzysegmenter =
FuzzySegmentationFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The affinity map can be accessed through the type \code{FuzzySceneType}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef FuzzySegmentationFilterType::FuzzySceneType FuzzySceneType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate reader and writer types
//
// Software Guide : EndLatex
typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< BinaryImageType > WriterType;
typedef itk::ImageFileWriter< FuzzySceneType > FuzzyWriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FuzzyWriterType::Pointer fwriter = FuzzyWriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
fwriter->SetFileName( argv[3] );
InputImageType::IndexType index;
index[0] = atoi(argv[4]);
index[1] = atoi(argv[5]);
const double varianceMultiplier = atof( argv[6] );
// Software Guide : BeginLatex
//
// The output of the reader is passed as input to the ConfidenceConnected image filter.
// Then the filter is executed in order to obtain estimations of the mean and variance
// gray values for the region to be segmented.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnectedFilter->SetInput( reader->GetOutput() );
confidenceConnectedFilter->SetMultiplier( varianceMultiplier );
confidenceConnectedFilter->SetNumberOfIterations( 2 );
confidenceConnectedFilter->AddSeed( index );
confidenceConnectedFilter->Update();
// Software Guide : EndCodeSnippet
WriterType::Pointer confidenceWriter = WriterType::New();
confidenceWriter->SetInput( confidenceConnectedFilter->GetOutput() );
confidenceWriter->SetFileName("confidenceConnectedPreprocessing.png");
confidenceWriter->Update();
// Software Guide : BeginLatex
//
// The input that is passed to the fuzzy segmentation filter is taken from
// the reader.
//
// \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetInput()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fuzzysegmenter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
const double meanEstimation = confidenceConnectedFilter->GetMean();
const double varianceEstimation = confidenceConnectedFilter->GetVariance();
std::cout << "Mean estimation = " << meanEstimation << std::endl;
std::cout << "Variance estimation = " << varianceEstimation << std::endl;
// Software Guide : BeginLatex
//
// The parameters of the fuzzy segmentation filter are defined here. A seed
// point is provided with the method \code{SetObjectsSeed()} in order to
// initialize the region to be grown. Estimated values for the mean and
// variance of the object intensities are also provided with the methods
// \code{SetMean()} and \code{SetVariance()}, respectively. A threshold
// value for generating the binary object is preset with the method
// \code{SetThreshold()}. For details describing the role of the mean and
// variance on the computation of the segmentation, please see
// \cite{Udupa1996}.
//
// \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetObjectsSeed()}
// \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetMean()}
// \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetVariance()}
// \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetThreshold()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fuzzysegmenter->SetObjectSeed( index );
fuzzysegmenter->SetMean( meanEstimation );
fuzzysegmenter->SetVariance( varianceEstimation );
fuzzysegmenter->SetThreshold( 0.5 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The execution of the fuzzy segmentation filter is triggered by the
// \code{Update()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fuzzysegmenter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginCodeSnippet
writer->SetInput( fuzzysegmenter->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginCodeSnippet
fwriter->SetInput( fuzzysegmenter->GetFuzzyScene() );
fwriter->Update();
// Software Guide : EndCodeSnippet
return 0;
}
|