File: HybridSegmentationFuzzyVoronoi.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (421 lines) | stat: -rw-r--r-- 15,176 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    HybridSegmentationFuzzyVoronoi.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifdef _MSC_VER
#pragma warning ( disable : 4786 )
#endif
  
//  Software Guide : BeginCommandLineArgs
//    INPUTS: {BrainT1Slice.png}
//    OUTPUTS: {HybridSegmentationFuzzyVoronoiOutput.png}
//    140 125 140 25 0.2 2.0
//  Software Guide : EndCommandLineArgs
//  Software Guide : BeginCommandLineArgs
//    INPUTS: {FatMRISlice.png}
//    OUTPUTS: {HybridSegmentationFuzzyVoronoiOutput2.png}
//    80 200 140 300 0.3 3.0
//  Software Guide : EndCommandLineArgs

// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{SimpleFuzzyConnectednessScalarImageFilter} and
// \doxygen{VoronoiSegmentationImageFilter} to build a hybrid segmentation that
// integrates fuzzy connectedness with the Voronoi diagram classification.
//
// Please note that the Fuzzy Connectedness algorithm is covered by a patent
// \cite{Udupa1998}. For this reason the current example is located in the
// \texttt{Examples/Patented} subdirectory.
//
// First, we include the header files of the two filters.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
#include "itkSimpleFuzzyConnectednessScalarImageFilter.h"
#include "itkVoronoiSegmentationImageFilter.h"
// Software Guide : EndCodeSnippet


#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkRescaleIntensityImageFilter.h"


int main( int argc, char *argv[] )
{
  if( argc < 9 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " inputImage  outputImage seedX seedY " << std::endl;
    std::cerr << " estimateMean estimateVariance (used by FuzzySegmentation) " << std::endl;
    std::cerr << " meanTolerance standardDeviationTolerance (used by VoronoiSegmentation) " << std::endl;
    return 1;
    }


  //  Software Guide : BeginLatex
  //  
  //  Next, we declare the pixel type and image dimension and 
  //  specify the image type to be used as input.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef  float     InputPixelType;
  const    unsigned int      Dimension = 2;
  typedef itk::Image< InputPixelType, Dimension >  InputImageType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  Fuzzy connectedness segmentation is performed first to generate
  //  a rough segmentation that yields a sample of tissue from the
  //  region to be segmented.  A binary result, representing the
  //  sample, is used as a prior for the next step.  Here, we use the
  //  \doxygen{SimpleFuzzyConnectednessScalarImageFilter}, but we may
  //  also utilize any other image segmentation filter instead.  The
  //  result produced by the fuzzy segmentation filter is stored in a
  //  binary image.  Below, we declare the type of the image using a
  //  pixel type and a spatial dimension.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef unsigned char                             BinaryPixelType;
  typedef itk::Image< BinaryPixelType, Dimension >  BinaryImageType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The fuzzy segmentation filter type is instantiated here using the input
  //  and binary image types as template parameters.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef   itk::SimpleFuzzyConnectednessScalarImageFilter< 
                                               InputImageType, 
                                               BinaryImageType 
                                                  >  FuzzySegmentationFilterType;
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The fuzzy connectedness segmentation filter is created by invoking the
  //  \code{New()} method and assigning the result to a
  //  \doxygen{SmartPointer}.
  //
  //  \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!New()}
  //  \index{itk::SimpleFuzzy\-Connectedness\-Scalar\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  FuzzySegmentationFilterType::Pointer fuzzysegmenter = 
                                         FuzzySegmentationFilterType::New();
  // Software Guide : EndCodeSnippet

  
  //  Software Guide : BeginLatex
  //  
  //  In the next step of the hybrid segmentation method, the prior generated
  //  from the fuzzy segmentation is used to build a homogeneity measurement
  //  for the object.  A VoronoiSegmentationImageFilter uses the
  //  homogeneity measurement to drive iterative subdivision of Voronoi regions
  //  and to generate the final segmentation result (for details, please see
  //  \cite{Imielinska2000b}).  In this example, the result of the
  //  VoronoiSegmentationImageFilter is sent to a writer. Its output
  //  type is conveniently declared as one that is compatible with the writer.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef unsigned char                            OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
  // Software Guide : EndCodeSnippet
                        

  //  Software Guide : BeginLatex
  //
  //  The following lines instantiate  the Voronoi segmentation filter.
  //
  //  \index{itk::Voronoi\-Segmentation\-Image\-Filter!New()}
  //  \index{itk::Voronoi\-Segmentation\-Image\-Filter!Pointer}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef  itk::VoronoiSegmentationImageFilter<
                                      InputImageType, 
                                      OutputImageType,
                                      BinaryImageType>
                                           VoronoiSegmentationFilterType;

  VoronoiSegmentationFilterType::Pointer voronoisegmenter = 
                                     VoronoiSegmentationFilterType::New();
  // Software Guide : EndCodeSnippet
  

  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{BrainT1Slice.eps}
  // \includegraphics[width=0.44\textwidth]{HybridSegmentationFuzzyVoronoiOutput.eps}
  // \itkcaption[Segmentation results for the hybrid segmentation
  // approach]{Segmentation results for the hybrid segmentation approach.}
  // \label{fig:HybridSegmentationFuzzyVoronoiOutput}
  // \end{figure}
  //
  //  Software Guide : EndLatex 

  //  Software Guide : BeginLatex
  //
  // \begin{figure} \center
  // \includegraphics[width=0.44\textwidth]{FatMRISlice.eps}
  // \includegraphics[width=0.44\textwidth]{HybridSegmentationFuzzyVoronoiOutput2.eps}
  // \itkcaption[Segmentation result for the hybrid segmentation
  // approach]{Another segmentation result for the hybrid segmentation
  // approach.}
  // \label{fig:HybridSegmentationFuzzyVoronoiOutput2}
  // \end{figure}
  //
  //  Software Guide : EndLatex 


  // We instantiate reader and writer types
  //
  typedef  itk::ImageFileReader< InputImageType >    ReaderType;
  typedef  itk::ImageFileWriter<  OutputImageType  > WriterType;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName( argv[1] );
  writer->SetFileName( argv[2] );


  //  Software Guide : BeginLatex
  //  
  //  The input that is passed to the fuzzy segmentation filter is taken from
  //  the reader.
  //
  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetInput()}
  //
  //  Software Guide : EndLatex 
  
  // Software Guide : BeginCodeSnippet
  fuzzysegmenter->SetInput( reader->GetOutput() );
  // Software Guide : EndCodeSnippet

  
  InputImageType::IndexType index;

  index[0] = atoi(argv[3]);
  index[1] = atoi(argv[4]);

  const float  mean              = atof(argv[5]);
  const float  variance          = atof(argv[6]);

  const float  meanTolerance     = atof( argv[7] );
  const float  stdTolerance      = atof( argv[8] );


  //  Software Guide : BeginLatex
  //  
  //  The parameters of the fuzzy segmentation filter are defined here. A seed
  //  point is provided with the method \code{SetObjectSeed()} in order to
  //  initialize the region to be grown.  Estimated values for the mean and
  //  variance of the object intensities are also provided with the methods
  //  \code{SetMean()} and \code{SetVariance()}, respectively. A threshold
  //  value for generating the binary object is preset with the method
  //  \code{SetThreshold()}.  For details describing the role of the mean and
  //  variance on the computation of the segmentation, please see
  //  \cite{Udupa1996}. 
  //
  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetObjectSeed()}
  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetMean()}
  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetVariance()}
  //  \index{itk::Simple\-Fuzzy\-Connectedness\-Scalar\-Image\-Filter!SetThreshold()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  fuzzysegmenter->SetObjectSeed( index );
  fuzzysegmenter->SetMean( mean );
  fuzzysegmenter->SetVariance( variance );
  fuzzysegmenter->SetThreshold( 0.5 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The execution of the fuzzy segmentation filter is triggered by the
  //  \code{Update()} method.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  fuzzysegmenter->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The input to the Voronoi diagram classification filter is obtained from
  //  the reader and the prior is obtained from the fuzzy segmentation filter.
  //
  //  \index{itk::VoronoiSegmentationImageFilter!SetInput()}
  //  \index{itk::VoronoiSegmentationImageFilter!TakeAPrior()}
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  voronoisegmenter->SetInput( reader->GetOutput() );
  voronoisegmenter->TakeAPrior( fuzzysegmenter->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The tolerance levels for testing the mean and standard deviation are set
  //  with the methods \code{SetMeanPercentError()} and
  //  \code{SetSTDPercentError()}. Note that the
  //  fuzzy segmentation filter uses \emph{variance} as parameter while
  //  the Voronoi segmentation filter uses the tolerance of the
  //  \emph{standard deviation} as a parameter. For more details on how these
  //  parameters should be selected, please see \cite{Imielinska2000b}.
  //  
  //  \index{itk::VoronoiSegmentationImageFilter!SetMeanPercentError()}
  //  \index{itk::VoronoiSegmentationImageFilter!SetSTDPercentError()}
  //
  //  Software Guide : EndLatex 
 
  // Software Guide : BeginCodeSnippet
  voronoisegmenter->SetMeanPercentError( meanTolerance );
  voronoisegmenter->SetSTDPercentError(  stdTolerance );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  // 
  //  The \emph{resolution} of the Voronoi diagram classification can be
  //  chosen with the method \code{SetMinRegion()}.
  //
  //  \index{itk::VoronoiSegmentationImageFilter!SetMinRegion()}
  //
  //  Software Guide : EndLatex 

  
  // Software Guide : BeginCodeSnippet
  voronoisegmenter->SetMinRegion( 5 );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  //  The execution of the Voronoi segmentation filter is triggered with the
  //  \code{Update()} method.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  voronoisegmenter->Update();
  // Software Guide : EndCodeSnippet

  
  //  Software Guide : BeginLatex
  //
  //  The output of the Voronoi diagram classification is an image mask with
  //  zeros everywhere and ones inside the segmented object. This image will
  //  appear black on many image viewers since they do not usually stretch
  //  the gray levels. Here, we add a \doxygen{RescaleIntensityImageFilter}
  //  in order to expand the dynamic range to more typical values.
  //
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::RescaleIntensityImageFilter< OutputImageType,OutputImageType >
    ScalerFilterType;
  ScalerFilterType::Pointer scaler = ScalerFilterType::New();

  scaler->SetOutputMinimum(   0 );
  scaler->SetOutputMaximum( 255 );

  scaler->SetInput( voronoisegmenter->GetOutput() );
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //  
  // The output of the rescaler is passed to the writer. The invocation
  // of the \code{Update()} method on the writer triggers the execution of
  // the pipeline.
  //  
  //  Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  writer->SetInput( scaler->GetOutput() );
  writer->Update();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  We execute this program on the image \code{BrainT1Slice.png} available
  //  in the directory \code{Examples/Data}. The following parameters are
  //  passed to the command line:
  // 
  //  \small
  //  \begin{verbatim}
  //HybridSegmentationFuzzyVoronoi BrainT1Slice.png Output.png 140 125 140 25 0.2 2.0
  //  \end{verbatim}
  //  \normalsize
  //
  //  $(140,125)$ specifies the index position of a seed point in the image,
  //  while $140$ and $25$ are the estimated mean and standard deviation,
  //  respectively, of the object to be segmented.  Finally, $0.2$ and $2.0$
  //  are the tolerance for the mean and standard deviation, respectively.
  //  Figure~\ref{fig:HybridSegmentationFuzzyVoronoiOutput} shows the input
  //  image and the binary mask resulting from the segmentation.
  //
  //  Note that in order to successfully segment other images, these
  //  parameters have to be adjusted to reflect the data. For example, when
  //  segmenting the input image \code{FatMRISlice.png} we apply the
  //  following new set of parameters parameters.
  // 
  //  \small
  //  \begin{verbatim}
  //HybridSegmentationFuzzyVoronoi FatMRISlice.png Output.png 80 200 140 300 0.3 3.0
  //  \end{verbatim}
  //  \normalsize
  //
  //  Figure~\ref{fig:HybridSegmentationFuzzyVoronoiOutput2} shows the input
  //  image and the binary mask resulting from this segmentation. Note that,
  //  we can segment color (RGB) and other multi-channel images using an
  //  approach similar to this example.
  //
  //  Software Guide : EndLatex 

  return 0;
}