File: ConfidenceConnected3D.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (143 lines) | stat: -rw-r--r-- 4,226 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    ConfidenceConnected3D.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif

//  Software Guide : BeginCommandLineArgs
//  INPUTS: {brainweb165a10f17.mha}
//  OUTPUTS: {WhiteMatterSegmentation.mhd}
//  Software Guide : EndCommandLineArgs


#include "itkConfidenceConnectedImageFilter.h"
#include "itkImage.h"
#include "itkCastImageFilter.h"
#include "itkCurvatureFlowImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

// Software Guide : BeginLatex
//
// This example is a 3D version of the previous ConfidenceConnected example.
// In this particular case, we are extracting the white matter from an input
// Brain MRI dataset.
//
// Software Guide : EndLatex 


int main( int argc, char *argv[] )
{
  if( argc < 3 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " inputImage  outputImage " << std::endl;
    return 1;
    }


  typedef   float           InternalPixelType;
  const     unsigned int    Dimension = 3;
  typedef itk::Image< InternalPixelType, Dimension >  InternalImageType;

  typedef unsigned char                            OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

  typedef itk::CastImageFilter< InternalImageType, OutputImageType >
    CastingFilterType;
  CastingFilterType::Pointer caster = CastingFilterType::New();
                        

  typedef  itk::ImageFileReader< InternalImageType > ReaderType;
  typedef  itk::ImageFileWriter<  OutputImageType  > WriterType;

  ReaderType::Pointer reader = ReaderType::New();
  WriterType::Pointer writer = WriterType::New();

  reader->SetFileName( argv[1] );
  writer->SetFileName( argv[2] );

  typedef itk::CurvatureFlowImageFilter< InternalImageType, InternalImageType >
    CurvatureFlowImageFilterType;
  CurvatureFlowImageFilterType::Pointer smoothing = 
                         CurvatureFlowImageFilterType::New();

  typedef itk::ConfidenceConnectedImageFilter<InternalImageType, InternalImageType> 
    ConnectedFilterType;
  ConnectedFilterType::Pointer confidenceConnected = ConnectedFilterType::New();

  smoothing->SetInput( reader->GetOutput() );
  confidenceConnected->SetInput( smoothing->GetOutput() );
  caster->SetInput( confidenceConnected->GetOutput() );
  writer->SetInput( caster->GetOutput() );

  smoothing->SetNumberOfIterations( 2 );
  smoothing->SetTimeStep( 0.05 );

  confidenceConnected->SetMultiplier( 2.5 );
  confidenceConnected->SetNumberOfIterations( 5 );
  confidenceConnected->SetInitialNeighborhoodRadius( 2 );
  confidenceConnected->SetReplaceValue( 255 );
  
  InternalImageType::IndexType index1;
  index1[0] = 118; 
  index1[1] = 133;
  index1[2] = 92;
  confidenceConnected->AddSeed( index1 );

  InternalImageType::IndexType index2;
  index2[0] = 63;
  index2[1] = 135;
  index2[2] = 94;
  confidenceConnected->AddSeed( index2 );
 
  InternalImageType::IndexType index3;
  index3[0] = 63;
  index3[1] = 157;
  index3[2] = 90;
  confidenceConnected->AddSeed( index3 );
 
  InternalImageType::IndexType index4;
  index4[0] = 111;
  index4[1] = 150;
  index4[2] = 90;
  confidenceConnected->AddSeed( index4 );
 
  InternalImageType::IndexType index5;
  index5[0] = 111;
  index5[1] = 50;
  index5[2] = 88;
  confidenceConnected->AddSeed( index5 );

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excep )
    {
    std::cerr << "Exception caught !" << std::endl;
    std::cerr << excep << std::endl;
    }


  return EXIT_SUCCESS;
}