1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: ConnectedThresholdImageFilter.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#ifdef __BORLANDC__
#define ITK_LEAN_AND_MEAN
#endif
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput1.png}
// 60 116 150 180
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput2.png}
// 81 112 210 250
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput3.png}
// 107 69 180 210
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The following example illustrates the use of the
// \doxygen{ConnectedThresholdImageFilter}. This filter uses the flood fill
// iterator. Most of the algorithmic complexity of a region growing method
// comes from visiting neighboring pixels. The flood fill iterator assumes
// this responsibility and greatly simplifies the implementation of the
// region growing algorithm. Thus the algorithm is left to establish a
// criterion to decide whether a particular pixel should be included in
// the current region or not.
//
// \index{itk::FloodFillIterator!In Region Growing}
// \index{itk::ConnectedThresholdImageFilter}
// \index{itk::ConnectedThresholdImageFilter!header}
//
// The criterion used by the ConnectedThresholdImageFilter is based on an
// interval of intensity values provided by the user. Values of lower and
// upper threshold should be provided. The region growing algorithm includes
// those pixels whose intensities are inside the interval.
//
// \begin{equation}
// I(\mathbf{X}) \in [ \mbox{lower}, \mbox{upper} ]
// \end{equation}
//
// Let's look at the minimal code required to use this algorithm. First, the
// following header defining the ConnectedThresholdImageFilter class
// must be included.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkConnectedThresholdImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImage.h"
#include "itkCastImageFilter.h"
// Software Guide : BeginLatex
//
// Noise present in the image can reduce the capacity of this filter to grow
// large regions. When faced with noisy images, it is usually convenient to
// pre-process the image by using an edge-preserving smoothing filter. Any of
// the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters}
// could be used to this end. In this particular example we use the
// \doxygen{CurvatureFlowImageFilter}, hence we need to include its header
// file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCurvatureFlowImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
int main( int argc, char *argv[])
{
if( argc < 7 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage seedX seedY lowerThreshold upperThreshold" << std::endl;
return 1;
}
// Software Guide : BeginLatex
//
// We declare the image type based on a particular pixel type and
// dimension. In this case the \code{float} type is used for the pixels
// due to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter< InternalImageType, OutputImageType >
CastingFilterType;
CastingFilterType::Pointer caster = CastingFilterType::New();
// We instantiate reader and writer types
//
typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
//
// The smoothing filter is instantiated using the image type as
// a template parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CurvatureFlowImageFilter< InternalImageType, InternalImageType >
CurvatureFlowImageFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now declare the type of the region growing filter. In this case it is
// the ConnectedThresholdImageFilter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ConnectedThresholdImageFilter< InternalImageType,
InternalImageType > ConnectedFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ConnectedFilterType::Pointer connectedThreshold = ConnectedFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now it is time to connect a simple, linear pipeline. A file reader is
// added at the beginning of the pipeline and a cast filter and writer
// are added at the end. The cast filter is required to convert
// \code{float} pixel types to integer types since only a few image file
// formats support \code{float} types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput( reader->GetOutput() );
connectedThreshold->SetInput( smoothing->GetOutput() );
caster->SetInput( connectedThreshold->GetOutput() );
writer->SetInput( caster->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The CurvatureFlowImageFilter requires a couple of parameters to
// be defined. The following are typical values for $2D$ images. However
// they may have to be adjusted depending on the amount of noise present in
// the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetNumberOfIterations( 5 );
smoothing->SetTimeStep( 0.125 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The ConnectedThresholdImageFilter has two main parameters to be
// defined. They are the lower and upper thresholds of the interval in
// which intensity values should fall in order to be included in the
// region. Setting these two values too close will not allow enough
// flexibility for the region to grow. Setting them too far apart will
// result in a region that engulfs the image.
//
// \index{itk::ConnectedThresholdImageFilter!SetUpper()}
// \index{itk::ConnectedThresholdImageFilter!SetLower()}
//
// Software Guide : EndLatex
const InternalPixelType lowerThreshold = atof( argv[5] );
const InternalPixelType upperThreshold = atof( argv[6] );
// Software Guide : BeginCodeSnippet
connectedThreshold->SetLower( lowerThreshold );
connectedThreshold->SetUpper( upperThreshold );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this filter is a binary image with zero-value pixels
// everywhere except on the extracted region. The intensity value set
// inside the region is selected with the method \code{SetReplaceValue()}
//
// \index{itk::ConnectedThresholdImageFilter!SetReplaceValue()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
connectedThreshold->SetReplaceValue( 255 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The initialization of the algorithm requires the user to provide a seed
// point. It is convenient to select this point to be placed in a
// \emph{typical} region of the anatomical structure to be segmented. The
// seed is passed in the form of a \doxygen{Index} to the \code{SetSeed()}
// method.
//
// \index{itk::ConnectedThresholdImageFilter!SetSeed()}
//
// Software Guide : EndLatex
InternalImageType::IndexType index;
index[0] = atoi( argv[3] );
index[1] = atoi( argv[4] );
// Software Guide : BeginCodeSnippet
connectedThreshold->SetSeed( index );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. It is usually wise to put update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Let's run this example using as input the image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations and defining
// values for the lower and upper thresholds.
// Figure~\ref{fig:ConnectedThresholdOutput} illustrates several examples of
// segmentation. The parameters used are presented in
// Table~\ref{tab:ConnectedThresholdOutput}.
//
// \begin{table}
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|}
// \hline
// Structure & Seed Index & Lower & Upper & Output Image \\ \hline
// White matter & $(60,116)$ & 150 & 180 & Second from left in Figure \ref{fig:ConnectedThresholdOutput} \\ \hline
// Ventricle & $(81,112)$ & 210 & 250 & Third from left in Figure \ref{fig:ConnectedThresholdOutput} \\ \hline
// Gray matter & $(107,69)$ & 180 & 210 & Fourth from left in Figure \ref{fig:ConnectedThresholdOutput} \\ \hline
// \end{tabular}
// \end{center}
// \itkcaption[ConnectedThreshold example parameters]{Parameters used for
// segmenting some brain structures shown in
// Figure~\ref{fig:ConnectedThresholdOutput} with the filter
// \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}}
// \end{table}
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{BrainProtonDensitySlice.eps}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput1.eps}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput2.eps}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput3.eps}
// \itkcaption[ConnectedThreshold segmentation results]{Segmentation results
// for the ConnectedThreshold filter for various seed points.}
// \label{fig:ConnectedThresholdOutput}
// \end{figure}
//
// Notice that the gray matter is not being completely segmented. This
// illustrates the vulnerability of the region growing methods when the
// anatomical structures to be segmented do not have a homogeneous
// statistical distribution over the image space. You may want to
// experiment with different values of the lower and upper thresholds to
// verify how the accepted region will extend.
//
// Another option for segmenting regions is to take advantage of the
// functionality provided by the ConnectedThresholdImageFilter for
// managing multiple seeds. The seeds can be passed one by one to the
// filter using the \code{AddSeed()} method. You could imagine a user
// interface in which an operator clicks on multiple points of the object
// to be segmented and each selected point is passed as a seed to this
// filter.
//
// Software Guide : EndLatex
return 0;
}
|