File: BayesianClassifierInitializer.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (177 lines) | stat: -rw-r--r-- 6,859 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    BayesianClassifierInitializer.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

//
// This is an example of the itk::BayesianClassifierInitializationImageFilter.
// The example's goal is to serve as an initializer for the 
// BayesianClassifier.cxx example also found in this directory. 
// 
// This example takes an input image (to be classified) and generates membership
// images. The membership images determine the degree to which each pixel
// belongs to a class. 
//
// The membership image generated by the filter is an 
// itk::VectorImage, (with pixels organized as follows: For a 2D image,
// its essentially a 3D array on file with DataType[y][x][c] where c is the 
// number of classes and DataType is the template parameter of the filter 
// (defaults to float). For a 3D image, it will be organized as 
// Datatype[z][y][x][c])
// 
// The example also optionally takes in two more arguments, as a convenience to 
// the user. These arguements extract the specified component 'c' from the 
// membership image and rescale, so the user can fire up a typical image
// viewer and see the relative pixel memberships to class 'c'.
//
// Example args:
//   BrainProtonDensitySlice.png Memberships.mhd 4  2 Class2.png
// 
// Here Memberships.mhd will be a 2x2x4 image containing pixel memberships
// Class2.png shows pixel memberships to the third class, (rescaled for display)
// 
// Notes:
//   The default behaviour of the filter is to generate memberships by centering
// gaussian density functions around K-means of the pixel intensities in the 
// image. The filter allows you to specify your own membership functions as well.
// 

#include "itkImage.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionConstIterator.h"

int main(int argc, char *argv[])
{

  const unsigned int Dimension = 2;
  if( argc < 4 )
    {
    std::cerr << "Usage arguments: InputImage MembershipImage numberOfClasses [componentToExtract ExtractedImage]" << std::endl;
    std::cerr << "  The MembershipImage image written is a VectorImage, ( an image with multiple components ) ";
    std::cerr << "Given that most viewers can't see vector images, we will optionally extract a component and ";
    std::cerr << "write it out as a scalar image as well." << std::endl;
    return EXIT_FAILURE;
    }

  typedef itk::Image< unsigned char, Dimension > ImageType;
  typedef itk::BayesianClassifierInitializationImageFilter< ImageType > 
                                                BayesianInitializerType;
  BayesianInitializerType::Pointer bayesianInitializer 
                                          = BayesianInitializerType::New();

  typedef itk::ImageFileReader< ImageType > ReaderType;
  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( argv[1] );

  try
    {
    reader->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception thrown " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  bayesianInitializer->SetInput( reader->GetOutput() );
  bayesianInitializer->SetNumberOfClasses( atoi( argv[3] ) );

  // TODO add test where we specify membership functions
  
  typedef itk::ImageFileWriter< 
    BayesianInitializerType::OutputImageType >  WriterType;
  WriterType::Pointer writer = WriterType::New();
  writer->SetInput( bayesianInitializer->GetOutput() );
  writer->SetFileName( argv[2] );
  
  try
    {
    bayesianInitializer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception thrown " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception thrown " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  if( argv[4] && argv[5] )
    {
    typedef BayesianInitializerType::OutputImageType MembershipImageType;
    typedef itk::Image< MembershipImageType::InternalPixelType, 
                        Dimension > ExtractedComponentImageType;
    ExtractedComponentImageType::Pointer extractedComponentImage = 
                                    ExtractedComponentImageType::New();
    extractedComponentImage->CopyInformation( 
                          bayesianInitializer->GetOutput() );
    extractedComponentImage->SetBufferedRegion( bayesianInitializer->GetOutput()->GetBufferedRegion() );
    extractedComponentImage->SetRequestedRegion( bayesianInitializer->GetOutput()->GetRequestedRegion() );
    extractedComponentImage->Allocate();
    typedef itk::ImageRegionConstIterator< MembershipImageType > ConstIteratorType;
    typedef itk::ImageRegionIterator< ExtractedComponentImageType > IteratorType;
    ConstIteratorType cit( bayesianInitializer->GetOutput(), 
                     bayesianInitializer->GetOutput()->GetBufferedRegion() );
    IteratorType it( extractedComponentImage, 
                     extractedComponentImage->GetLargestPossibleRegion() );
    
    const unsigned int componentToExtract = atoi( argv[4] );
    cit.GoToBegin();
    it.GoToBegin();
    while( !cit.IsAtEnd() )
      {
      it.Set(cit.Get()[componentToExtract]);
      ++it;
      ++cit;
      }

    // Write out the rescaled extracted component
    typedef itk::Image< unsigned char, Dimension > OutputImageType;
    typedef itk::RescaleIntensityImageFilter< 
      ExtractedComponentImageType, OutputImageType > RescalerType;
    RescalerType::Pointer rescaler = RescalerType::New();
    rescaler->SetInput( extractedComponentImage );
    rescaler->SetOutputMinimum( 0 );
    rescaler->SetOutputMaximum( 255 );
    typedef itk::ImageFileWriter<  OutputImageType
                        >  ExtractedComponentWriterType;
    ExtractedComponentWriterType::Pointer 
               rescaledImageWriter = ExtractedComponentWriterType::New();
    rescaledImageWriter->SetInput( rescaler->GetOutput() );
    rescaledImageWriter->SetFileName( argv[5] );
    rescaledImageWriter->Update();
    }

  return EXIT_SUCCESS;
}