File: GaussianDensityFunction.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (110 lines) | stat: -rw-r--r-- 3,365 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    GaussianDensityFunction.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

     Copyright (c) Insight Software Consortium. All rights reserved.
     See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

// Software Guide : BeginLatex
//
// \index{Statistics!Gaussian (normal) probability density function}
//
// \index{itk::Statistics::GaussianDensityFunction}
//
// The Gaussian probability density function
// \subdoxygen{Statistics}{GaussianDensityFunction} requires two
// distribution parameters---the mean vector and the covariance matrix.
//
// We include the header files for the class and the \doxygen{Vector}.
//
// Software Guide : EndLatex 

// Software Guide : BeginCodeSnippet
#include "itkVector.h"
#include "itkGaussianDensityFunction.h"
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We define the type of the measurement vector that will be input to
// the Gaussian density function.
//
// Software Guide : EndLatex 

int main(int, char*[])
{
  // Software Guide : BeginCodeSnippet
  typedef itk::Vector< float, 2 > MeasurementVectorType;
  // Software Guide : EndCodeSnippet
  // Software Guide : BeginLatex
  //
  // The instantiation of the function is done through the usual
  // \code{New()} method and a smart pointer.
  //
  // Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  typedef itk::Statistics::GaussianDensityFunction< MeasurementVectorType > 
    DensityFunctionType;
  DensityFunctionType::Pointer densityFunction = DensityFunctionType::New();
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The length of the measurement vectors in the density function, in this
  // case a vector of length 2, is specified using the 
  // \code{SetMeasurementVectorSize()} method.
  // Software Guide : EndLatex 
  
  // Software Guide : BeginCodeSnippet
  densityFunction->SetMeasurementVectorSize( 2 );
  // Software Guide : EndCodeSnippet
  
  // Software Guide : BeginLatex
  //
  // We create the two distribution parameters and set them. The mean is
  // [0, 0], and the covariance matrix is a 2 x 2 matrix:
  // \[
  // \begin{pmatrix}
  // 4 & 0 \cr
  // 0 & 4
  // \end{pmatrix}
  // \]
  // We obtain the probability density for the measurement vector: [0, 0]
  // using the \code{Evaluate(measurement vector)} method and print it out.
  //
  // Software Guide : EndLatex 

  // Software Guide : BeginCodeSnippet
  DensityFunctionType::MeanType mean( 2 );
  mean.Fill( 0.0 );

  DensityFunctionType::CovarianceType cov;
  cov.SetSize( 2, 2 );
  cov.SetIdentity();
  cov *= 4;

  densityFunction->SetMean( &mean );
  densityFunction->SetCovariance( &cov );
  
  MeasurementVectorType mv;
  mv.Fill( 0 );

  std::cout << densityFunction->Evaluate( mv ) << std::endl;
  // Software Guide : EndCodeSnippet

  return 0;
}