File: ImageHistogram1.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (259 lines) | stat: -rw-r--r-- 7,798 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    ImageHistogram1.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

// Software Guide : BeginLatex
//
// This example shows how to compute the histogram of a scalar image.  Since
// the statistics framework classes operate on Samples and
// ListOfSamples, we need to introduce a class that will make the image look
// like a list of samples. This class is the
// \subdoxygen{Statistics}{ScalarImageToListAdaptor}.  Once we have connected
// this adaptor to an image, we can proceed to use the
// \subdoxygen{Statistics}{ListSampleToHistogramGenerator} in order to compute
// the histogram of the image.
//
// First, we need to include the headers for the
// \subdoxygen{Statistics}{ScalarImageToListAdaptor} and the \doxygen{Image} classes.
//
// \index{itk::Statistics::Scalar\-Image\-To\-List\-Adaptor!header}
// \index{Statistics!Images}
//
// Software Guide : EndLatex 

// Software Guide : BeginCodeSnippet
#include "itkScalarImageToListAdaptor.h"
#include "itkImage.h"
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// Now we include the headers for the \code{ListSampleToHistogramGenerator} and
// the reader that we will use for reading the image from a file.
//
// \index{itk::Statistics::List\-Sample\-To\-Histogram\-Generator!header}
//
// Software Guide : EndLatex 

// Software Guide : BeginCodeSnippet
#include "itkImageFileReader.h"
#include "itkListSampleToHistogramGenerator.h"
// Software Guide : EndCodeSnippet

int main( int argc, char * argv [] )
{

  if( argc < 2 )
    {
    std::cerr << "Missing command line arguments" << std::endl;
    std::cerr << "Usage :  ImageHistogram1  inputImageFileName " << std::endl;
    return -1;
    }



// Software Guide : BeginLatex
//
// The image type must be defined using the typical pair of pixel type and
// dimension specification.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  typedef unsigned char       PixelType;
  const unsigned int          Dimension = 2;

  typedef itk::Image<PixelType, Dimension > ImageType;
// Software Guide : EndCodeSnippet



// Software Guide : BeginLatex
//
// Using the same image type we instantiate the type of the image reader that
// will provide the image source for our example.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  typedef itk::ImageFileReader< ImageType > ReaderType;

  ReaderType::Pointer reader = ReaderType::New();

  reader->SetFileName( argv[1] );
// Software Guide : EndCodeSnippet


// Software Guide : BeginLatex
//
// Now we introduce the central piece of this example, which is the use of the
// adaptor that will present the \doxygen{Image} as if it was a list of
// samples. We instantiate the type of the adaptor by using the actual image
// type. Then construct the adaptor by invoking its \code{New()} method and
// assigning the result to the corresponding smart pointer. Finally we connect
// the output of the image reader to the input of the adaptor. 
//
// \index{itk::Statistics::Scalar\-Image\-To\-List\-Adaptor!instantiation}
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  typedef itk::Statistics::ScalarImageToListAdaptor< ImageType >   AdaptorType;

  AdaptorType::Pointer adaptor = AdaptorType::New();

  adaptor->SetImage(  reader->GetOutput() );
// Software Guide : EndCodeSnippet




// Software Guide : BeginLatex
//
// You must keep in mind that adaptors are not pipeline objects. This means
// that they do not propagate update calls. It is therefore your responsibility
// to make sure that you invoke the \code{Update()} method of the reader before
// you attempt to use the output of the adaptor. As usual, this must be done
// inside a try/catch block because the read operation can potentially throw
// exceptions.
//
// Software Guide : EndLatex 

// Software Guide : BeginCodeSnippet
  try
    {
    reader->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Problem reading image file : " << argv[1] << std::endl;
    std::cerr << excp << std::endl;
    return -1;
    }
// Software Guide : EndCodeSnippet



// Software Guide : BeginLatex
//
// At this point, we are ready for instantiating the type of the histogram
// generator. Note that the adaptor type is used as template parameter of the
// generator. Having instantiated this type, we proceed to create one generator
// by invoking its \code{New()} method.
//
// \index{itk::Statistics::List\-Sample\-To\-Histogram\-Generator!instantiation}
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  typedef PixelType        HistogramMeasurementType;

  typedef itk::Statistics::ListSampleToHistogramGenerator< 
                                                AdaptorType, 
                                                HistogramMeasurementType 
                                                                > GeneratorType;

  GeneratorType::Pointer generator = GeneratorType::New();
// Software Guide : EndCodeSnippet



// Software Guide : BeginLatex
//
// We define now the characteristics of the Histogram that we want to compute.
// This typically includes the size of each one of the component, but given
// that in this simple example we are dealing with a scalar image, then our
// histogram will have a single component. For the sake of generality, however,
// we use the \code{HistogramType} as defined inside of the Generator type. We
// define also the marginal scale factor that will control the precision used
// when assigning values to histogram bins. Finally we invoke the
// \code{Update()} method in the generator.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  typedef GeneratorType::HistogramType  HistogramType;

  HistogramType::SizeType size;
  size.Fill( 256 );

  generator->SetListSample( adaptor );
  generator->SetNumberOfBins( size );
  generator->SetMarginalScale( 10.0 );

  HistogramType::MeasurementVectorType min;
  HistogramType::MeasurementVectorType max;
  
  min.Fill(   -0.5 );
  max.Fill(  255.5 );
  
  generator->SetHistogramMin( min );
  generator->SetHistogramMax( max );

  generator->Update();
// Software Guide : EndCodeSnippet




// Software Guide : BeginLatex
//
// Now we are ready for using the image histogram for any further processing.
// The histogram is obtained from the generator by invoking the
// \code{GetOutput()} method.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  HistogramType::ConstPointer histogram = generator->GetOutput();
// Software Guide : EndCodeSnippet



// Software Guide : BeginLatex
//
// In this current example we simply print out the frequency values of all the
// bins in the image histogram.
//
// Software Guide : EndLatex 


// Software Guide : BeginCodeSnippet
  const unsigned int histogramSize = histogram->Size();

  std::cout << "Histogram size " << histogramSize << std::endl;

  for( unsigned int bin=0; bin < histogramSize; bin++ )
    {
    std::cout << "bin = " << bin << " frequency = ";
    std::cout << histogram->GetFrequency( bin, 0 ) <<std::endl;
    }
// Software Guide : EndCodeSnippet

  return 0;
  
}