1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
// Native ITK stuff
#include "itkSize.h"
#include "itkIndex.h"
#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkPoint.h"
// Blox stuff
#include "itkBloxBoundaryProfileImage.h"
#include "itkBloxBoundaryPointPixel.h"
#include "itkBloxBoundaryPointImage.h"
#include "itkGradientImageToBloxBoundaryPointImageFilter.h"
#include "itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilter.h"
// Spatial function stuff
#include "itkSphereSpatialFunction.h"
#include "itkFloodFilledSpatialFunctionConditionalIterator.h"
// DOG gradient related stuff
#include "itkBinomialBlurImageFilter.h"
#include "itkDifferenceOfGaussiansGradientImageFilter.h"
#include "itkExceptionObject.h"
#include <time.h>
int itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest(int, char*[])
{
const unsigned int dim = 3;
const unsigned int size = 20;
// Image typedef
typedef itk::Image< unsigned char, dim > ImageType;
//-----------------Create a new input image--------------------
// Image size and spacing parameters
ImageType::SizeValueType sourceImageSize[] = { size,size,size };
ImageType::SpacingValueType sourceImageSpacing[] = { 1.0,1.0,1.0 };
ImageType::PointValueType sourceImageOrigin[] = { 0,0,0 };
// Creates the sourceImage (but doesn't set the size or allocate memory)
ImageType::Pointer sourceImage = ImageType::New();
sourceImage->SetOrigin(sourceImageOrigin);
sourceImage->SetSpacing(sourceImageSpacing);
std::cout << "New sourceImage created" << std::endl;
// The following block allocates the sourceImage
// Create a size object native to the sourceImage type
ImageType::SizeType sourceImageSizeObject;
// Set the size object to the array defined earlier
sourceImageSizeObject.SetSize( sourceImageSize );
// Create a region object native to the sourceImage type
ImageType::RegionType largestPossibleRegion;
// Resize the region
largestPossibleRegion.SetSize( sourceImageSizeObject );
// Set the largest legal region size (i.e. the size of the whole sourceImage) to what we just defined
sourceImage->SetLargestPossibleRegion( largestPossibleRegion );
// Set the buffered region
sourceImage->SetBufferedRegion( largestPossibleRegion );
// Set the requested region
sourceImage->SetRequestedRegion( largestPossibleRegion );
// Now allocate memory for the sourceImage
sourceImage->Allocate();
std::cout << "New sourceImage allocated" << std::endl;
// Initialize the image to voxel values of 32
itk::ImageRegionIterator<ImageType> it =
itk::ImageRegionIterator<ImageType>(sourceImage, largestPossibleRegion);
for(it.GoToBegin(); !it.IsAtEnd(); ++it)
{
it.Set(32);
}
//---------Put a sphere in the input image-----------
typedef itk::SphereSpatialFunction<dim> FunctionType;
typedef FunctionType::InputType FunctionPositionType;
// Create and initialize a new sphere function
FunctionType::Pointer spatialFunc = FunctionType::New();
unsigned int sphereRadius = 7;
spatialFunc->SetRadius( sphereRadius );
// Set center of spatial function to (10,10,10)
FunctionPositionType center;
center[0]=10;
center[1]=10;
center[2]=10;
spatialFunc->SetCenter(center);
std::cout << "Sphere spatial function created" << std::endl;
// Create and initialize a spatial function iterator
ImageType::IndexType seedPos;
const ImageType::IndexValueType pos[] = {10,10,10};
seedPos.SetIndex(pos);
typedef itk::FloodFilledSpatialFunctionConditionalIterator
<ImageType, FunctionType> ItType;
ItType sfi = ItType(sourceImage, spatialFunc, seedPos);
// Iterate through the entire image and set interior pixels to 255
for( ; !( sfi.IsAtEnd() ); ++sfi)
{
sfi.Set(255);
}
std::cout << "Spatial function iterator created, sphere drawn" << std::endl;
//--------------------Do blurring and edge detection----------------
typedef ImageType OutputType;
// Create a binomial blur filter
itk::BinomialBlurImageFilter<ImageType, OutputType>::Pointer binfilter;
binfilter = itk::BinomialBlurImageFilter<ImageType, OutputType>::New();
sourceImage->SetRequestedRegion(sourceImage->GetLargestPossibleRegion() );
// Set filter parameters
binfilter->SetInput(sourceImage);
binfilter->SetRepetitions(1);
// Set up the output of the filter
ImageType::Pointer blurredImage = binfilter->GetOutput();
// Execute the filter
binfilter->Update();
std::cout << "Binomial blur filter updated\n";
// Create a differennce of gaussians gradient filter
typedef itk::DifferenceOfGaussiansGradientImageFilter<OutputType,
double> DOGFilterType;
DOGFilterType::Pointer DOGFilter = DOGFilterType::New();
// We're filtering the output of the binomial filter
DOGFilter->SetInput(blurredImage);
// Get the output of the gradient filter
DOGFilterType::TOutputImage::Pointer gradientImage = DOGFilter->GetOutput();
// Go!
DOGFilter->Update();
//------------------------Blox Boundary Point Analysis-------------------------
// Typedefs for finding boundary points with GradientImageToBloxBoundaryPointImageFilter
typedef itk::GradientImageToBloxBoundaryPointImageFilter<DOGFilterType::TOutputImage> TBPFilter;
typedef TBPFilter::TOutputImage BloxBPImageType;
// Find boundary points using results of DOG blurring
TBPFilter::Pointer bpFilter= TBPFilter::New();
bpFilter->SetInput( DOGFilter->GetOutput() );
// Get the output of the boundary point filter
BloxBPImageType::Pointer bloxBoundaryPointImage = bpFilter->GetOutput();
// Update
bpFilter->Update();
//------------------------Blox Profile Analysis---------------------------------
// For calculating total execution time
int startTime;
int endTime;
// Time the execution of profiles
startTime = clock();
// Typedefs for bloxboundaryprofile filter and image
typedef itk::BloxBoundaryPointImageToBloxBoundaryProfileImageFilter< ImageType > TProfileFilter;
typedef itk::BloxBoundaryProfileImage< dim > BloxProfileImageType;
TProfileFilter::Pointer profileFilter = TProfileFilter::New();
std::cout << "Profile filter created" << std::endl;
// Set the inputs need to find profiles
profileFilter->SetInput1( blurredImage );
profileFilter->SetInput2( bloxBoundaryPointImage );
std::cout << "Input images set" << std::endl;
// Initialize and set required parameters
double setUniqueAxis = 10; // major axis of sampling region (ellipsoid)
double setSymmetricAxes = 5; // minor axes of sampling region (ellipsoid)
unsigned int numberOfBins = static_cast<unsigned int>(setUniqueAxis); // lets make each bin 1 voxel wide
unsigned int splatMethod = 0; // method to weight voxel intensities
// 0 - Gaussian, 1 - Triangular
unsigned int spaceDimension = 4; // number of cost function parameters
profileFilter->Initialize(setUniqueAxis, setSymmetricAxes, numberOfBins,
splatMethod, spaceDimension);
std::cout << "Profile filter initialized" << std::endl;
// Get the output of the profile filter
BloxProfileImageType::Pointer bloxBoundaryProfileImage = profileFilter->GetOutput();
// Try and update profile filter if there are no exceptions
try
{
profileFilter->Update();
}
catch( itk::ExceptionObject & myException )
{
std::cerr << "Exception caught in Update() method" << std::endl;
std::cerr << myException << std::endl;
return EXIT_FAILURE;
}
//-------------------Pull boundary profiles out of the image----------------------
// The test for BloxBoundaryPointImageToBloxBoundaryProfileImageFilter
// requires that the mean of estimated boundary locations is within
// 0.1 voxels of the sphere's boundary.
// Create an iterator that will walk the blox image
typedef itk::ImageRegionIterator<BloxProfileImageType> BloxIterator;
//profile iterator
BloxIterator bloxIt = BloxIterator(bloxBoundaryProfileImage,
bloxBoundaryProfileImage->GetRequestedRegion() );
// Used for obtaining the index of a pixel
BloxProfileImageType::IndexType bloxindex;
// Position are we at in the list
double averageRadius = 0;
unsigned int profileCount = 1;
for (bloxIt.GoToBegin(); !bloxIt.IsAtEnd(); ++bloxIt)
{
// What position are we at in the list?
// Get the index of the pixel
bloxindex = bloxIt.GetIndex();
std::cout << "bloxindex: " << bloxindex << std::endl;
// The iterator for accessing linked list info from profile pixel
// Walk through all of the elements at the pixel
for(itk::BloxBoundaryProfilePixel<3>::const_iterator bpiterator = bloxIt.Value().begin();
bpiterator != bloxIt.Value().end(); ++bpiterator)
{
// Used for obtaining position data from a BloxPoint
const itk::Point<double, 3> position = (*bpiterator)->GetOptimalBoundaryLocation();
// Find location of boundary profile on sphere
const double halfsize=static_cast<double>(size)/2.0;
const double radius = vcl_sqrt(
vcl_pow((position[0] - halfsize), 2.0) +
vcl_pow((position[1] - halfsize), 2.0) +
vcl_pow((position[2] - halfsize), 2.0) );
// Keep running sum of estimated radius to compute average radius
averageRadius += radius;
profileCount++;
if(profileCount == 2)
{
// Lets print some parameters of the blox boundary profile item for increased coverage
// only do it once to keep the test fast.
std::cerr << "Lower Intensity: " << (*bpiterator)->GetLowerIntensity() << std::endl
<< "Upper Intensity: " << (*bpiterator)->GetUpperIntensity() << std::endl
<< "Mean: " << (*bpiterator)->GetMean() << std::endl
<< "Profile Length: " << (*bpiterator)->GetProfileLength() << std::endl
<< "Normalized Mean: " << (*bpiterator)->GetMeanNormalized() << std::endl
<< "Standard Deviation: " << (*bpiterator)->GetStandardDeviation() << std::endl
<< "Normalized SD: " << (*bpiterator)->GetStandardDeviationNormalized() << std::endl;
}
} // end iterate
}
// Compute average radius estimated by boundary profiles
averageRadius = averageRadius/profileCount;
std::cout << "Sphere Radius = " << sphereRadius << " Average Radius = " << averageRadius << std::endl;
// Report time to execute itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilter
endTime = clock();
std::cout << "Profile calculation time: " << (endTime - startTime)/CLOCKS_PER_SEC
<< " seconds" << std::endl;
// Test passes if estimated radius is within .1 voxel of sphere radius
const double RadiusDifference = vcl_fabs(averageRadius - sphereRadius);
const double tolerance = 1;
if(RadiusDifference <= tolerance)
{
std::cout << "itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest Passed!!!" << std::endl;
return EXIT_SUCCESS;
}
else
{
std::cerr << "itkBloxBoundaryPointImageToBloxBoundaryProfileImageFilterTest Failed! (TEST: ("
<< RadiusDifference
<< " <= "
<< tolerance
<< ") Failed!"
<< std::endl;
return EXIT_FAILURE;
}
}
|