1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkDiffusionTensor3DReconstructionImageFilterTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "itkDiffusionTensor3DReconstructionImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include <iostream>
int itkDiffusionTensor3DReconstructionImageFilterTest(int, char*[])
{
typedef short int ReferencePixelType;
typedef short int GradientPixelType;
typedef double TensorPrecisionType;
typedef itk::DiffusionTensor3DReconstructionImageFilter<
ReferencePixelType, GradientPixelType, TensorPrecisionType >
TensorReconstructionImageFilterType;
typedef TensorReconstructionImageFilterType::GradientImageType GradientImageType;
TensorReconstructionImageFilterType::Pointer tensorReconstructionFilter =
TensorReconstructionImageFilterType::New();
// Create a reference image
//
typedef TensorReconstructionImageFilterType::ReferenceImageType ReferenceImageType;
ReferenceImageType::Pointer referenceImage = ReferenceImageType::New();
typedef ReferenceImageType::RegionType ReferenceRegionType;
typedef ReferenceRegionType::IndexType ReferenceIndexType;
typedef ReferenceRegionType::SizeType ReferenceSizeType;
ReferenceSizeType sizeReferenceImage = {{ 4, 4, 4 }};
ReferenceIndexType indexReferenceImage = {{ 0, 0, 0 }};
ReferenceRegionType regionReferenceImage;
regionReferenceImage.SetSize( sizeReferenceImage );
regionReferenceImage.SetIndex( indexReferenceImage);
referenceImage->SetRegions( regionReferenceImage );
referenceImage->Allocate();
referenceImage->FillBuffer( 100 );
const unsigned int numberOfGradientImages = 6;
// Assign gradient directions
//
double gradientDirections[6][3] =
{
{-1.000000, 0.000000 , 0.000000},
{-0.166000, 0.986000 , 0.000000},
{0.110000 , 0.664000 , 0.740000},
{-0.901000, -0.419000 , -0.110000},
{0.169000 , -0.601000 , 0.781000},
{0.815000 , -0.386000 , 0.433000}
};
// Create gradient images
//
typedef GradientImageType::Pointer GradientImagePointer;
typedef TensorReconstructionImageFilterType::GradientImageType GradientImageType;
typedef GradientImageType::RegionType GradientRegionType;
typedef GradientRegionType::IndexType GradientIndexType;
typedef GradientRegionType::SizeType GradientSizeType;
typedef ReferenceRegionType::IndexType ReferenceIndexType;
for( unsigned int i=0; i < numberOfGradientImages; i++ )
{
GradientImageType::Pointer gradientImage = GradientImageType::New();
GradientSizeType sizeGradientImage = {{ 4, 4, 4 }};
GradientIndexType indexGradientImage = {{ 0, 0, 0 }};
GradientRegionType regionGradientImage;
regionGradientImage.SetSize( sizeGradientImage );
regionGradientImage.SetIndex( indexGradientImage);
gradientImage->SetRegions( regionGradientImage );
gradientImage->Allocate();
itk::ImageRegionIteratorWithIndex< GradientImageType > git(
gradientImage, regionGradientImage );
git.GoToBegin();
while( !git.IsAtEnd() )
{
GradientPixelType fancyGradientValue =
static_cast< short int >((i+1) * (i+1) * (i+1));
git.Set( fancyGradientValue );
++git;
}
TensorReconstructionImageFilterType::GradientDirectionType gradientDirection;
gradientDirection[0] = gradientDirections[i][0];
gradientDirection[1] = gradientDirections[i][1];
gradientDirection[2] = gradientDirections[i][2];
tensorReconstructionFilter->AddGradientImage( gradientDirection, gradientImage );
std::cout << "Gradient directions: " << gradientDirection << std::endl;
}
tensorReconstructionFilter->SetReferenceImage( referenceImage );
// TODO: remove this when netlib is made thread safe
tensorReconstructionFilter->SetNumberOfThreads( 1 );
// Also see if vnl_svd is thread safe now...
std::cout << std::endl << "This filter is using " <<
tensorReconstructionFilter->GetNumberOfThreads() << " threads " << std::endl;
tensorReconstructionFilter->Update();
typedef TensorReconstructionImageFilterType::TensorImageType TensorImageType;
TensorImageType::Pointer tensorImage = tensorReconstructionFilter->GetOutput();
typedef TensorImageType::IndexType TensorImageIndexType;
TensorImageIndexType tensorImageIndex = {{3,3,3}};
GradientIndexType gradientImageIndex = {{3,3,3}};
ReferenceIndexType referenceImageIndex = {{3,3,3}};
std::cout << std::endl << "Pixels at index: " << tensorImageIndex << std::endl;
std::cout << "Reference pixel "
<< referenceImage->GetPixel( referenceImageIndex ) << std::endl;
for( unsigned int i=0; i < numberOfGradientImages; i++ )
{
std::cout << "Gradient image " << i << " pixel : "
<< static_cast< GradientImageType * >( const_cast< GradientImageType * >(
tensorReconstructionFilter->GetInput(i+1)))->GetPixel(gradientImageIndex)
<< std::endl;
}
double expectedResult[3][3] =
{
{4.60517, -2.6698, -8.4079},
{-2.6698, 1.56783, 0.900034},
{-8.4079, 0.900034, 2.62504}
};
std::cout << std::endl << "Reconstructed tensor : " << std::endl;
bool passed = true;
double precision = 0.0001;
for( unsigned int i = 0; i<3; i++ )
{
std::cout << "\t";
for( unsigned int j = 0; j<3; j++ )
{
std::cout << tensorImage->GetPixel(tensorImageIndex)(i,j) << " ";
if( (vnl_math_abs(tensorImage->GetPixel(tensorImageIndex)(i,j) - expectedResult[i][j])) > precision )
{
passed = false;
}
}
std::cout << std::endl;
}
if( !passed )
{
std::cout << "[FAILED]" << std::endl;
std::cout << "Expected tensor : " << std::endl;
for( unsigned int i = 0; i<3; i++ )
{
std::cout << "\t";
for( unsigned int j = 0; j<3; j++ )
{
std::cout << expectedResult[i][j] << " ";
}
std::cout << std::endl;
}
return EXIT_FAILURE;
}
std::cout << "[PASSED]" << std::endl;
return EXIT_SUCCESS;
}
|