1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkHausdorffDistanceImageFilterTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkDirectedHausdorffDistanceImageFilter.h"
#include "itkHausdorffDistanceImageFilter.h"
#include "itkImageRegionIterator.h"
#include "itkFilterWatcher.h"
int itkHausdorffDistanceImageFilterTest(int, char* [] )
{
typedef unsigned int Pixel1Type;
typedef float Pixel2Type;
enum { ImageDimension = 3 };
typedef itk::Image<Pixel1Type,ImageDimension> Image1Type;
typedef itk::Image<Pixel2Type,ImageDimension> Image2Type;
Image1Type::Pointer image1 = Image1Type::New();
Image2Type::Pointer image2 = Image2Type::New();
Image1Type::SizeType size;
size.Fill( 50 );
image1->SetRegions( size );
image2->SetRegions( size );
image1->Allocate();
image2->Allocate();
image1->FillBuffer( itk::NumericTraits<Pixel1Type>::Zero );
image2->FillBuffer( itk::NumericTraits<Pixel2Type>::Zero );
typedef Image1Type::RegionType RegionType;
RegionType region1;
RegionType region2;
typedef Image1Type::IndexType IndexType;
IndexType index;
size.Fill( 20 );
index.Fill( 10 );
region1.SetSize( size );
region1.SetIndex( index );
size.Fill( 15 );
index.Fill( 20 );
region2.SetSize( size );
region2.SetIndex( index );
itk::ImageRegionIterator<Image1Type> it1( image1, region1 );
Pixel1Type count = itk::NumericTraits<Pixel1Type>::Zero;
while ( !it1.IsAtEnd() )
{
it1.Set( ++count );
++it1;
}
itk::ImageRegionIterator<Image2Type> it2( image2, region2 );
while ( !it2.IsAtEnd() )
{
it2.Set( 7.2 );
++it2;
}
// compute the directed Hausdorff distance h(image1,image2)
{
typedef itk::DirectedHausdorffDistanceImageFilter<Image1Type,Image2Type> FilterType;
FilterType::Pointer filter = FilterType::New();
FilterWatcher watcher(filter, "filter");
filter->SetInput1( image1 );
filter->SetInput2( image2 );
filter->Update();
filter->Print( std::cout );
// check results
FilterType::RealType trueDistance = 10 *
vcl_sqrt( static_cast<double>(ImageDimension) );
FilterType::RealType distance = filter->GetDirectedHausdorffDistance();
std::cout << " True distance: " << trueDistance << std::endl;
std::cout << " Computed computed: " << distance << std::endl;
std::cout << " Average distance: " << filter->GetAverageHausdorffDistance() << std::endl;
if ( vnl_math_abs( trueDistance - distance ) > 0.1 )
{
std::cout << "Test failed. " << std::endl;
return EXIT_FAILURE;
}
if ( vnl_math_abs( 6.5 - filter->GetAverageHausdorffDistance() ) > 0.1 )
{
std::cout << "Test failed, average distance too great. " << std::endl;
return EXIT_FAILURE;
}
}
// compute the directed Hausdorff distance h(image2,image1)
{
typedef itk::DirectedHausdorffDistanceImageFilter<Image2Type,Image1Type> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput1( image2 );
filter->SetInput2( image1 );
filter->Update();
// check results
FilterType::RealType trueDistance = 5 *
vcl_sqrt( static_cast<double>(ImageDimension) );
FilterType::RealType distance = filter->GetDirectedHausdorffDistance();
std::cout << " True distance: " << trueDistance << std::endl;
std::cout << " Computed computed: " << distance << std::endl;
std::cout << " Average distance: " << filter->GetAverageHausdorffDistance() << std::endl;
if ( vnl_math_abs( trueDistance - distance ) > 0.1 )
{
std::cout << "Test failed. " << std::endl;
return EXIT_FAILURE;
}
if ( vnl_math_abs( 2.5 - filter->GetAverageHausdorffDistance() ) > 0.1 )
{
std::cout << "Test failed, average distance too great. " << std::endl;
return EXIT_FAILURE;
}
}
// compute the Hausdorff distance H(image1,image2)
{
typedef itk::HausdorffDistanceImageFilter<Image1Type,Image2Type> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput1( image1 );
filter->SetInput2( image2 );
filter->Update();
// check results
FilterType::RealType trueDistance = 10 *
vcl_sqrt( static_cast<double>(ImageDimension) );
FilterType::RealType distance = filter->GetHausdorffDistance();
std::cout << " True distance: " << trueDistance << std::endl;
std::cout << " Computed computed: " << distance << std::endl;
std::cout << " Average distance: " << filter->GetAverageHausdorffDistance() << std::endl;
if ( vnl_math_abs( trueDistance - distance ) > 0.1 )
{
std::cout << "Test failed. " << std::endl;
return EXIT_FAILURE;
}
if ( vnl_math_abs( 4.5 - filter->GetAverageHausdorffDistance() ) > 0.1 )
{
std::cout << "Test failed, average distance too great. " << std::endl;
return EXIT_FAILURE;
}
}
// compute the Hausdorff distance H(image2,image1)
{
typedef itk::HausdorffDistanceImageFilter<Image2Type,Image1Type> FilterType;
FilterType::Pointer filter = FilterType::New();
filter->SetInput1( image2 );
filter->SetInput2( image1 );
filter->Update();
// check results
FilterType::RealType trueDistance = 10 *
vcl_sqrt( static_cast<double>(ImageDimension) );
FilterType::RealType distance = filter->GetHausdorffDistance();
std::cout << " True distance: " << trueDistance << std::endl;
std::cout << " Computed computed: " << distance << std::endl;
std::cout << " Average distance: " << filter->GetAverageHausdorffDistance() << std::endl;
if ( vnl_math_abs( trueDistance - distance ) > 0.1 )
{
std::cout << "Test failed. " << std::endl;
return EXIT_FAILURE;
}
if ( vnl_math_abs( 4.5 - filter->GetAverageHausdorffDistance() ) > 0.1 )
{
std::cout << "Test failed, average distance too great. " << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "Test passed. " << std::endl;
return EXIT_SUCCESS;
}
|