File: itkStatisticsImageFilterTest.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (160 lines) | stat: -rw-r--r-- 5,447 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkStatisticsImageFilterTest.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include <iostream>

#include "itkImage.h"
#include "itkImageRegionIterator.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"

#include "itkStatisticsImageFilter.h"
#include "itkRandomImageSource.h"
#include "itkFilterWatcher.h"
#include "vnl/vnl_math.h"

int itkStatisticsImageFilterTest(int, char* [] )
{
  std::cout << "itkStatisticsImageFilterTest Start" << std::endl;

  int status = 0;
  typedef itk::Image<int,3> FloatImage;

  FloatImage::Pointer    image  = FloatImage::New();
  FloatImage::RegionType region;
  FloatImage::SizeType   size; size.Fill(64);
  FloatImage::IndexType  index; index.Fill(0);

  region.SetIndex (index);
  region.SetSize (size);

  // first try a constant image
  float fillValue = -100.0;
  image->SetRegions( region );
  image->Allocate();
  image->FillBuffer( static_cast< FloatImage::PixelType >( fillValue ) );

  float sum = fillValue * static_cast<float>( region.GetNumberOfPixels() );

  typedef itk::StatisticsImageFilter<FloatImage> FilterType;
  FilterType::Pointer filter = FilterType::New();

  FilterWatcher filterWatch(filter);
  
  filter->SetInput (image);
  filter->UpdateLargestPossibleRegion();

  if (filter->GetMinimum() != fillValue)
    {
    std::cerr << "GetMinimum failed! Got " << filter->GetMinimum() << " but expected " << fillValue << std::endl;
    status++;
    }
  if (filter->GetMaximum() != fillValue)
    {
    std::cerr << "GetMaximum failed! Got " << filter->GetMaximum() << " but expected " << fillValue << std::endl;
    status++;
    }
  if (filter->GetSum() != sum)
    {
    std::cerr << "GetSum failed! Got " << filter->GetSum() << " but expected " << sum << std::endl;
    status++;
    }
  if (filter->GetMean() != fillValue)
    {
    std::cerr << "GetMean failed! Got " << filter->GetMean() << " but expected " << fillValue << std::endl;
    status++;
    }
  if (filter->GetVariance() != 0.0)
    {
    std::cerr << "GetVariance failed! Got " << filter->GetVariance() << " but expected " << 0.0 << std::endl;
    status++;
    }


  // Now generate a real image

  typedef itk::RandomImageSource<FloatImage> SourceType;
  SourceType::Pointer source = SourceType::New();

  FloatImage::SizeValueType randomSize[3] = {17, 8, 20};

  source->SetSize(randomSize);
  float minValue = -100.0;
  float maxValue = 1000.0;

  source->SetMin( static_cast< FloatImage::PixelType >( minValue ) );
  source->SetMax( static_cast< FloatImage::PixelType >( maxValue ) );

  filter->SetInput(source->GetOutput());
  filter->UpdateLargestPossibleRegion();
  
  double expectedSigma = vcl_sqrt((maxValue-minValue)*(maxValue-minValue)/12.0);
  double epsilon = (maxValue - minValue) * .001;

  if (vnl_math_abs(filter->GetSigma() - expectedSigma) > epsilon)
    {
    std::cerr << "GetSigma failed! Got " << filter->GetSigma() << " but expected " << expectedSigma << std::endl;
    }

  // Now generate an image with a known mean and variance
  itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer rvgen = itk::Statistics::MersenneTwisterRandomVariateGenerator::New();
  double knownMean = 12.0;
  double knownVariance = 10.0;

  typedef itk::Image<double,3> DoubleImage;
  DoubleImage::Pointer dImage = DoubleImage::New();
  DoubleImage::SizeType dsize;
  DoubleImage::IndexType dindex;
  DoubleImage::RegionType dregion;
  dsize.Fill(50);
  dindex.Fill(0);
  dregion.SetSize(dsize);
  dregion.SetIndex(dindex);
  dImage->SetRegions(dregion);
  dImage->Allocate();
  itk::ImageRegionIterator<DoubleImage> it(dImage, dregion);
  while (!it.IsAtEnd())
    {
    it.Set(rvgen->GetNormalVariate(knownMean, knownVariance));
    ++it;
    }
  typedef itk::StatisticsImageFilter<DoubleImage> DFilterType;
  DFilterType::Pointer dfilter = DFilterType::New();
  dfilter->SetInput(dImage);
  dfilter->UpdateLargestPossibleRegion();
  double testMean = dfilter->GetMean();
  double testVariance = dfilter->GetVariance();
  double diff = vnl_math_abs(testMean - knownMean);
  if ((diff != 0.0 && knownMean != 0.0) &&
      diff / vnl_math_abs(knownMean) > .01)
    {
    std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Expected mean is " << knownMean << ", computed mean is " << testMean << std::endl;
  diff = vnl_math_abs(testVariance - knownVariance);
  if ((diff != 0.0 && knownVariance != 0.0) &&
      diff / vnl_math_abs(knownVariance) > .1)
    {
    std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Expected variance is " << knownVariance << ", computed variance is " << testVariance << std::endl;
  return status;
}