File: itkGaussianDerivativeImageFunctionTest.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (213 lines) | stat: -rw-r--r-- 5,538 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkGaussianDerivativeImageFunctionTest.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkGaussianDerivativeImageFunction.h"
#include "itkGaussianDerivativeSpatialFunction.h"
#include "itkImage.h"

int itkGaussianDerivativeImageFunctionTest(int, char* [] )
{
  const unsigned int Dimension = 2;
  typedef float  PixelType; 
  typedef itk::Image< PixelType, Dimension > ImageType;
  typedef itk::GaussianDerivativeImageFunction< ImageType > DoGFunctionType;

  // Create and allocate the image
  ImageType::Pointer      image = ImageType::New();
  ImageType::SizeType     size;
  ImageType::IndexType    start;
  ImageType::RegionType   region;
 
  size[0] = 50;
  size[1] = 50;

  start.Fill( 0 ); 
  region.SetIndex( start );
  region.SetSize( size );

  image->SetRegions( region );
  image->Allocate();

  ImageType::PixelType initialValue = 0;
  image->FillBuffer( initialValue );

  // Fill the image with a straight line
  for(unsigned int i=0;i<50;i++)
  {
    ImageType::IndexType ind;
    ind[0]=i;
    ind[1]=25;
    image->SetPixel(ind,1);
    ind[1]=26;
    image->SetPixel(ind,1);
  }

  // Test the derivative of Gaussian image function
  DoGFunctionType::Pointer DoG = DoGFunctionType::New();
  DoG->SetInputImage( image );

  std::cout << "Testing Set/GetSigma(): ";
    
  DoG->SetSigma(2.0);
  const double* sigma = DoG->GetSigma();
  for(unsigned int i=0;i<Dimension;i++)
  {
    if( sigma[i] !=  2.0)
    {
    std::cerr << "[FAILED]" << std::endl;
    return EXIT_FAILURE;
    }
  }
  std::cout << "[PASSED] " << std::endl;
  

  std::cout << "Testing Set/GetExtent(): ";
    
  DoG->SetExtent(4.0);
  const double* ext = DoG->GetExtent();
  for(unsigned int i=0;i<Dimension;i++)
  {
    if( ext[i] !=  4.0)
    {
    std::cerr << "[FAILED]" << std::endl;
    return EXIT_FAILURE;
    }
  }
  std::cout << "[PASSED] " << std::endl;
  
  std::cout << "Testing consistency within Index/Point/ContinuousIndex: "; 
  itk::Index<2>   index;
  index.Fill(25);
  DoGFunctionType::OutputType  gradient_index;
  gradient_index = DoG->EvaluateAtIndex( index );

  DoGFunctionType::PointType pt;
  pt[0]=25.0;
  pt[1]=25.0;
  DoGFunctionType::OutputType  gradient_point;
  gradient_point = DoG->Evaluate( pt );

  
  DoGFunctionType::ContinuousIndexType continuousIndex;
  continuousIndex.Fill(25);
  DoGFunctionType::OutputType  gradient_continuousIndex;
  gradient_continuousIndex = DoG->EvaluateAtContinuousIndex( continuousIndex );

  if( gradient_index !=  gradient_point 
     || gradient_index != gradient_continuousIndex)
    {
    std::cerr << "[FAILED] : " << gradient_index << " : " 
              << gradient_point << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "[PASSED] " << std::endl;
  gradient_point.Normalize(); // normalize the vector;

  std::cout << "Testing Evaluate() : ";
  
  if( (gradient_point[0] > 0.1)  || 
      (vcl_fabs(gradient_point[1]+1.0)> 10e-4)
    )
    {
    std::cerr << "[FAILED]" << std::endl;
    return EXIT_FAILURE;
    }
 
  std::cout << "[PASSED] " << std::endl;

  pt[0]=25.0;
  pt[1]=26.0;
  gradient_point = DoG->Evaluate( pt );

  gradient_point.Normalize(); // normalize the vector;

  std::cout << "Testing Evaluate() : ";
  
  if( (gradient_point[0] > 0.1)  || 
      (vcl_fabs(gradient_point[1]-1.0)> 10e-4)
    )
    {
    std::cerr << "[FAILED]" << std::endl;
    return EXIT_FAILURE;
    }
 
  std::cout << "[PASSED] " << std::endl;

  std::cout << "Testing Gaussian Derivative Spatial Function:";
  
  typedef itk::GaussianDerivativeSpatialFunction<double,1>  GaussianDerivativeFunctionType;
  GaussianDerivativeFunctionType::Pointer f = GaussianDerivativeFunctionType::New();

  f->SetScale(1.0);
  if(f->GetScale() != 1.0)
    {
    std::cerr << "Get Scale : [FAILED]" << std::endl;
    return EXIT_FAILURE;
    }

  f->SetNormalized(true);
  if(!f->GetNormalized())
    {
    std::cerr << "GetNormalized : [FAILED]" << std::endl;
    return EXIT_FAILURE;
    }
  
  GaussianDerivativeFunctionType::ArrayType s;
  s[0] = 1.0; 
  f->SetSigma(s);
  if(f->GetSigma()[0] != 1.0)
    {
    std::cerr << "GetSigma : [FAILED]" << std::endl;
    return EXIT_FAILURE;
    }

  GaussianDerivativeFunctionType::ArrayType m;
  m[0] = 0.0;
  f->SetMean(m);
  if(f->GetMean()[0] != 0.0)
    {
    std::cerr << "GetMean : [FAILED]" << std::endl;
    return EXIT_FAILURE;
    }

  f->SetDirection(0);
  if(f->GetDirection() != 0)
    {
    std::cerr << "GetDirection : [FAILED]" << std::endl;
    return EXIT_FAILURE;
    }

  GaussianDerivativeFunctionType::InputType point;
  point[0] = 0.0;
  
  if(f->Evaluate(point) != 0.0)
    {
    std::cerr << "Evaluate: [FAILED]" << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << f << std::endl;
  std::cout << "[PASSED] " << std::endl;

  std::cout << "GaussianDerivativeImageFunctionTest: [DONE] " << std::endl;
  return EXIT_SUCCESS;
}