1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGaussianDerivativeImageFunctionTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkGaussianDerivativeImageFunction.h"
#include "itkGaussianDerivativeSpatialFunction.h"
#include "itkImage.h"
int itkGaussianDerivativeImageFunctionTest(int, char* [] )
{
const unsigned int Dimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::GaussianDerivativeImageFunction< ImageType > DoGFunctionType;
// Create and allocate the image
ImageType::Pointer image = ImageType::New();
ImageType::SizeType size;
ImageType::IndexType start;
ImageType::RegionType region;
size[0] = 50;
size[1] = 50;
start.Fill( 0 );
region.SetIndex( start );
region.SetSize( size );
image->SetRegions( region );
image->Allocate();
ImageType::PixelType initialValue = 0;
image->FillBuffer( initialValue );
// Fill the image with a straight line
for(unsigned int i=0;i<50;i++)
{
ImageType::IndexType ind;
ind[0]=i;
ind[1]=25;
image->SetPixel(ind,1);
ind[1]=26;
image->SetPixel(ind,1);
}
// Test the derivative of Gaussian image function
DoGFunctionType::Pointer DoG = DoGFunctionType::New();
DoG->SetInputImage( image );
std::cout << "Testing Set/GetSigma(): ";
DoG->SetSigma(2.0);
const double* sigma = DoG->GetSigma();
for(unsigned int i=0;i<Dimension;i++)
{
if( sigma[i] != 2.0)
{
std::cerr << "[FAILED]" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "[PASSED] " << std::endl;
std::cout << "Testing Set/GetExtent(): ";
DoG->SetExtent(4.0);
const double* ext = DoG->GetExtent();
for(unsigned int i=0;i<Dimension;i++)
{
if( ext[i] != 4.0)
{
std::cerr << "[FAILED]" << std::endl;
return EXIT_FAILURE;
}
}
std::cout << "[PASSED] " << std::endl;
std::cout << "Testing consistency within Index/Point/ContinuousIndex: ";
itk::Index<2> index;
index.Fill(25);
DoGFunctionType::OutputType gradient_index;
gradient_index = DoG->EvaluateAtIndex( index );
DoGFunctionType::PointType pt;
pt[0]=25.0;
pt[1]=25.0;
DoGFunctionType::OutputType gradient_point;
gradient_point = DoG->Evaluate( pt );
DoGFunctionType::ContinuousIndexType continuousIndex;
continuousIndex.Fill(25);
DoGFunctionType::OutputType gradient_continuousIndex;
gradient_continuousIndex = DoG->EvaluateAtContinuousIndex( continuousIndex );
if( gradient_index != gradient_point
|| gradient_index != gradient_continuousIndex)
{
std::cerr << "[FAILED] : " << gradient_index << " : "
<< gradient_point << std::endl;
return EXIT_FAILURE;
}
std::cout << "[PASSED] " << std::endl;
gradient_point.Normalize(); // normalize the vector;
std::cout << "Testing Evaluate() : ";
if( (gradient_point[0] > 0.1) ||
(vcl_fabs(gradient_point[1]+1.0)> 10e-4)
)
{
std::cerr << "[FAILED]" << std::endl;
return EXIT_FAILURE;
}
std::cout << "[PASSED] " << std::endl;
pt[0]=25.0;
pt[1]=26.0;
gradient_point = DoG->Evaluate( pt );
gradient_point.Normalize(); // normalize the vector;
std::cout << "Testing Evaluate() : ";
if( (gradient_point[0] > 0.1) ||
(vcl_fabs(gradient_point[1]-1.0)> 10e-4)
)
{
std::cerr << "[FAILED]" << std::endl;
return EXIT_FAILURE;
}
std::cout << "[PASSED] " << std::endl;
std::cout << "Testing Gaussian Derivative Spatial Function:";
typedef itk::GaussianDerivativeSpatialFunction<double,1> GaussianDerivativeFunctionType;
GaussianDerivativeFunctionType::Pointer f = GaussianDerivativeFunctionType::New();
f->SetScale(1.0);
if(f->GetScale() != 1.0)
{
std::cerr << "Get Scale : [FAILED]" << std::endl;
return EXIT_FAILURE;
}
f->SetNormalized(true);
if(!f->GetNormalized())
{
std::cerr << "GetNormalized : [FAILED]" << std::endl;
return EXIT_FAILURE;
}
GaussianDerivativeFunctionType::ArrayType s;
s[0] = 1.0;
f->SetSigma(s);
if(f->GetSigma()[0] != 1.0)
{
std::cerr << "GetSigma : [FAILED]" << std::endl;
return EXIT_FAILURE;
}
GaussianDerivativeFunctionType::ArrayType m;
m[0] = 0.0;
f->SetMean(m);
if(f->GetMean()[0] != 0.0)
{
std::cerr << "GetMean : [FAILED]" << std::endl;
return EXIT_FAILURE;
}
f->SetDirection(0);
if(f->GetDirection() != 0)
{
std::cerr << "GetDirection : [FAILED]" << std::endl;
return EXIT_FAILURE;
}
GaussianDerivativeFunctionType::InputType point;
point[0] = 0.0;
if(f->Evaluate(point) != 0.0)
{
std::cerr << "Evaluate: [FAILED]" << std::endl;
return EXIT_FAILURE;
}
std::cout << f << std::endl;
std::cout << "[PASSED] " << std::endl;
std::cout << "GaussianDerivativeImageFunctionTest: [DONE] " << std::endl;
return EXIT_SUCCESS;
}
|