1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkGaussianSpatialFunctionTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include <stdio.h>
#include "itkGaussianSpatialFunction.h"
int itkGaussianSpatialFunctionTest(int, char* [] )
{
// Change this parameter (and the positions, below) to work in higher or lower dimensions
const unsigned int Dimension = 3;
//---------Create and initialize a spatial function-----------
typedef itk::GaussianSpatialFunction<double,Dimension> FunctionType;
typedef FunctionType::ArrayType ArrayType;
typedef FunctionType::InputType InputType;
// Create and initialize a new sphere function
FunctionType::Pointer spatialFunction = FunctionType::New();
ArrayType mean;
mean[0]=13;
mean[1]=17;
mean[2]=19;
spatialFunction->SetMean( mean );
// Test the Get macros as well
ArrayType mean1 = spatialFunction->GetMean();
// FIXME : verify the return values...
ArrayType sigma;
sigma[0]=5;
sigma[1]=7;
sigma[2]=9;
spatialFunction->SetSigma( sigma );
// Test the Get macros as well
ArrayType sigma1 = spatialFunction->GetSigma();
// FIXME : verify the return values...
double scale1 = spatialFunction->GetScale();
if( vcl_fabs( scale1 - 1.0 ) > vnl_math::eps )
{
std::cerr << "Error in initial scale value" << std::endl;
return EXIT_FAILURE;
}
bool normalized1 = spatialFunction->GetNormalized();
if( normalized1 )
{
std::cerr << "Error in initial value of normalized" << std::endl;
return EXIT_FAILURE;
}
double scale2 = 19.0;
spatialFunction->SetScale( scale2 );
if( spatialFunction->GetScale() != scale2 )
{
std::cerr << "Error in Set/GetScale()" << std::endl;
return EXIT_FAILURE;
}
spatialFunction->SetScale( 1.0 );
spatialFunction->SetNormalized( true );
std::cout << "Gaussian spatial function created\n";
//----------------Test evaluation of funtion------------------
// We're going to evaluate it at the center of the Gaussian (10,10,10)
InputType point;
point[0] = mean[0];
point[1] = mean[1];
point[2] = mean[2];
std::cout << spatialFunction->GetNameOfClass() << std::endl;
spatialFunction->Print( std::cout );
double computedValueAtMean = spatialFunction->Evaluate( point );
std::cout << "Gaussian function value is " << computedValueAtMean << std::endl;
const double oneDimensionalFactor = vcl_sqrt( 2.0 * vnl_math::pi );
const double factor = oneDimensionalFactor * oneDimensionalFactor * oneDimensionalFactor;
double expectedValueAtMean = 1.0 / ( sigma[0]*sigma[1]*sigma[2] * factor );
std::cout << "expectedValueAtMean = " << expectedValueAtMean << std::endl;
std::cout << "computed value = " << computedValueAtMean << std::endl;
if( vcl_fabs( computedValueAtMean - expectedValueAtMean ) > vnl_math::eps )
{
std::cerr << "Error in computation of value at mean" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|