1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkCovarianceSampleFilterTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkImageToListSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
#include "itkImageRegionIterator.h"
#include "itkFixedArray.h"
#include "itkVector.h"
#include "itkMeanSampleFilter.h"
#include "itkNumericTraitsFixedArrayPixel.h"
int itkCovarianceSampleFilterTest(int, char* [] )
{
std::cout << "CovarianceSampleFilter Test \n \n";
std::string whereFail = "";
// Now generate an image
enum { MeasurementVectorSize = 3 };
typedef float MeasurementType;
typedef itk::FixedArray< MeasurementType, MeasurementVectorSize > MeasurementVectorType;
typedef itk::Image< MeasurementVectorType, 3 > ImageType;
typedef itk::Image< unsigned char, 3 > MaskImageType;
ImageType::Pointer image = ImageType::New();
ImageType::RegionType region;
ImageType::SizeType size;
ImageType::IndexType index;
index.Fill(0);
size.Fill(5);
region.SetIndex(index);
region.SetSize(size);
image->SetBufferedRegion(region);
image->Allocate();
typedef itk::ImageRegionIterator< ImageType > ImageIterator;
ImageIterator iter(image, region);
unsigned int count = 0;
MeasurementVectorType temp;
temp.Fill(0);
// fill the image
while (!iter.IsAtEnd())
{
temp[0] = count;
iter.Set(temp);
++iter;
++count;
}
// creates an ImageToListAdaptor object
typedef itk::Statistics::ImageToListSampleFilter< ImageType, MaskImageType > ImageToListSampleFilterType;
ImageToListSampleFilterType::Pointer sampleGeneratingFilter = ImageToListSampleFilterType::New();
sampleGeneratingFilter->SetInput( image );
try
{
sampleGeneratingFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr<< excp << std::endl;
return EXIT_FAILURE;
}
typedef ImageToListSampleFilterType::ListSampleType ListSampleType;
typedef itk::Statistics::CovarianceSampleFilter< ListSampleType > CovarianceSampleFilterType;
CovarianceSampleFilterType::Pointer covarianceFilter = CovarianceSampleFilterType::New();
std::cout << "GetNameOfClass() = " << covarianceFilter->GetNameOfClass() << std::endl;
//Invoke update before adding an input. An exception should be
try
{
covarianceFilter->Update();
std::cerr << "Exception should have been thrown since \
Update() is invoked without setting an input " << std::endl;
return EXIT_FAILURE;
}
catch ( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
}
covarianceFilter->ResetPipeline();
if ( covarianceFilter->GetInput() != NULL )
{
std::cerr << "GetInput() should return NULL if the input \
has not been set" << std::endl;
return EXIT_FAILURE;
}
covarianceFilter->SetInput( sampleGeneratingFilter->GetOutput() );
try
{
covarianceFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr<< excp << std::endl;
return EXIT_FAILURE;
}
covarianceFilter->Print( std::cout );
const double epsilon = 1e-6;
// CHECK THE RESULTS
const CovarianceSampleFilterType::MeasurementVectorDecoratedType * meanDecorator =
covarianceFilter->GetMeanOutput();
CovarianceSampleFilterType::MeasurementVectorType mean = meanDecorator->Get();
std::cout << "Mean: " << mean << std::endl;
CovarianceSampleFilterType::MeasurementVectorType mean2 = covarianceFilter->GetMean();
if ( ( vcl_fabs( mean[0] - mean2[0]) > epsilon ) ||
( vcl_fabs( mean[1] - mean2[1]) > epsilon) ||
( vcl_fabs( mean[2] - mean2[2]) > epsilon) )
{
std::cerr << "Mean parameter value retrieved using GetMean() and the decorator\
are not the same:: " << mean << "," << mean2 << std::endl;
return EXIT_FAILURE;
}
const CovarianceSampleFilterType::MatrixDecoratedType * decorator = covarianceFilter->GetCovarianceMatrixOutput();
CovarianceSampleFilterType::MatrixType covarianceMatrix = decorator->Get();
std::cout << "Covariance matrix: " << covarianceMatrix << std::endl;
typedef itk::Statistics::MeanSampleFilter< ListSampleType > MeanSampleFilterType;
MeanSampleFilterType::Pointer meanFilter = MeanSampleFilterType::New();
meanFilter->SetInput( sampleGeneratingFilter->GetOutput());
try
{
meanFilter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception caught: " << excp << std::endl;
}
MeanSampleFilterType::MeasurementVectorType meanCalculatedUsingMeanSampleFilter = meanFilter->GetMean();
if ( ( vcl_fabs( meanCalculatedUsingMeanSampleFilter[0] - mean[0]) > epsilon ) ||
( vcl_fabs( meanCalculatedUsingMeanSampleFilter[1] - mean[1]) > epsilon) ||
( vcl_fabs( meanCalculatedUsingMeanSampleFilter[2] - mean[2]) > epsilon) )
{
std::cerr << "Mean calculated using the MeanSampleFilter is different from\
the once calculated using the covariance filter " << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|