File: itkMaximumRatioDecisionRuleTest.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (133 lines) | stat: -rw-r--r-- 4,065 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit
  Module:    itkMaximumRatioDecisionRuleTest.cxx
  Language:  C++
  Date:      $Date$
  Version:   $Revision$

  Copyright (c) Insight Software Consortium. All rights reserved.
  See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even 
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR 
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkMaximumRatioDecisionRule2.h"
#include "itkObjectFactory.h"

int itkMaximumRatioDecisionRuleTest(int, char* [] )
{
  typedef itk::Statistics::MaximumRatioDecisionRule2      MaximumRatioDecisionRuleType;

  typedef MaximumRatioDecisionRuleType::MembershipVectorType MembershipVectorType;

  MaximumRatioDecisionRuleType::Pointer decisionRule = MaximumRatioDecisionRuleType::New();

  std::cout << decisionRule->GetNameOfClass() << std::endl;
  std::cout << decisionRule->MaximumRatioDecisionRuleType::Superclass::GetNameOfClass() << std::endl;

  decisionRule->Print(std::cout);

  MembershipVectorType membershipScoreVector;
  
  double membershipScore1;
  membershipScore1 = 0.1;
  membershipScoreVector.push_back( membershipScore1 );

  double membershipScore2;
  membershipScore2 = 0.5;
  membershipScoreVector.push_back( membershipScore2 );

  double membershipScore3;
  membershipScore3 = 1.9;
  membershipScoreVector.push_back( membershipScore3 );

  //add discriminantscore with a value of zero
  double membershipScore4;
  membershipScore4 = 0.0;
  membershipScoreVector.push_back( membershipScore4 );


  unsigned int  decisionValue;
  try
    {
    decisionRule->Evaluate( membershipScoreVector);
    std::cerr << "An exception should have been thrown since a priori"
              << " probability is not set yet " << std::endl;
    return EXIT_FAILURE;
    } 
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception= " << excp << std::endl;
    }

  //Set aprior probablity 
  typedef MaximumRatioDecisionRuleType::APrioriVectorType APrioriVectorType; 
  typedef MaximumRatioDecisionRuleType::APrioriValueType APrioriValueType; 
  
  APrioriVectorType aprioriProbabilityVector;

  //first class
  APrioriValueType value1 = 0.4;
  aprioriProbabilityVector.push_back( value1 ); 

  //second class
  APrioriValueType value2 = 0.2;
  aprioriProbabilityVector.push_back( value2 ); 
  decisionRule->SetAPriori( aprioriProbabilityVector );

  //Evalue the membershipScore vector instantiated above ( 3 classes )
  try
    {
    decisionRule->Evaluate( membershipScoreVector);
    std::cerr << "An exception should have been thrown since the membership" 
              << " score vector size doesn't match with the apriori vector" << std::endl;
    return EXIT_FAILURE;
    } 
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception= " << excp << std::endl;
    }

  APrioriVectorType aprioriProbabilityVector2;

  value1 = 0.3;
  aprioriProbabilityVector2.push_back( value1 ); 

  value2 = 0.3;
  aprioriProbabilityVector2.push_back( value2 ); 

  //Add a third and a fourth class 
  APrioriValueType value3 = 0.3;
  aprioriProbabilityVector2.push_back( value3 ); 

  //Zero priori probability
  APrioriValueType value4 = 0.0;
  aprioriProbabilityVector2.push_back( value4 ); 

  decisionRule->SetAPriori( aprioriProbabilityVector2 );
  try
    {
    decisionValue = decisionRule->Evaluate( membershipScoreVector);
    } 
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception= " << excp << std::endl;
    return EXIT_FAILURE;
    }

  //Check if the computed decision value is correct 
  if( decisionValue != 2 )
    {
    std::cerr << "Decision rule computation is incorrect!" << std::endl;
    return EXIT_FAILURE;
    } 
 
  return EXIT_SUCCESS;
}