File: itkSampleClassifierFilterTest2.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (198 lines) | stat: -rw-r--r-- 7,164 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    itkSampleClassifierFilterTest2.cxx
Language:  C++
Date:      $Date$
Version:   $Revision$

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkArray.h"
#include "itkVariableLengthVector.h"
#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "itkMaximumDecisionRule2.h"
#include "itkGaussianMembershipFunction.h"
#include "itkNormalVariateGenerator.h"


//Test if the SampleClassifier filter labels observations correctly
int itkSampleClassifierFilterTest2( int, char * [] )
{

  const unsigned int numberOfComponents = 1;
  typedef float      MeasurementType;

  const unsigned int numberOfClasses = 2;

  typedef itk::Array< MeasurementType >                         MeasurementVectorType;
  typedef itk::Statistics::ListSample< MeasurementVectorType >  SampleType;
  typedef itk::Statistics::SampleClassifierFilter< SampleType > FilterType;

  FilterType::Pointer filter = FilterType::New();

  SampleType::Pointer sample = SampleType::New();
  sample->SetMeasurementVectorSize( numberOfComponents );

  filter->SetNumberOfClasses( numberOfClasses );

  if( filter->GetNumberOfClasses() != numberOfClasses )
    {
    std::cerr << "GetNumberOfClasses() didn't matched SetNumberOfClasses()" << std::endl;
    return EXIT_FAILURE;
    }

  typedef FilterType::ClassLabelVectorObjectType               ClassLabelVectorObjectType;
  typedef FilterType::ClassLabelVectorType                     ClassLabelVectorType;
  typedef FilterType::MembershipFunctionVectorObjectType       MembershipFunctionVectorObjectType;
  typedef FilterType::MembershipFunctionVectorType             MembershipFunctionVectorType;

  typedef itk::Statistics::GaussianMembershipFunction< MeasurementVectorType > 
                                                               MembershipFunctionType;
  typedef MembershipFunctionType::MeanType                     MeanType;
  typedef MembershipFunctionType::CovarianceType               CovarianceType;

  typedef MembershipFunctionType::Pointer                      MembershipFunctionPointer;

  ClassLabelVectorObjectType::Pointer  classLabelsObject = ClassLabelVectorObjectType::New();
  filter->SetClassLabels( classLabelsObject );

  MembershipFunctionVectorObjectType::Pointer membershipFunctionsObject =
                                        MembershipFunctionVectorObjectType::New();
  filter->SetMembershipFunctions( membershipFunctionsObject ); 
  // Add three membership functions and rerun the filter
  MembershipFunctionVectorType &  membershipFunctionsVector = membershipFunctionsObject->Get();

  MembershipFunctionPointer membershipFunction1 = MembershipFunctionType::New(); 
  membershipFunction1->SetMeasurementVectorSize( numberOfComponents );
  MeanType  mean1;
  itk::Statistics::MeasurementVectorTraits::SetLength( mean1, numberOfComponents );
  mean1[0] = 10.5;

  membershipFunction1->SetMean( mean1 );
  CovarianceType covariance1;
  covariance1.SetSize( numberOfComponents, numberOfComponents );
  covariance1.SetIdentity();
  covariance1[0][0] = 0.5;
  membershipFunction1->SetCovariance( covariance1 );
  membershipFunctionsVector.push_back( membershipFunction1.GetPointer() );

  MembershipFunctionPointer membershipFunction2 = MembershipFunctionType::New(); 
  membershipFunction1->SetMeasurementVectorSize( numberOfComponents );

  MeanType  mean2;
  itk::Statistics::MeasurementVectorTraits::SetLength( mean2, numberOfComponents );
  mean2[0] = 200.5;
  membershipFunction2->SetMean( mean2 );

  CovarianceType covariance2;
  covariance2.SetSize( numberOfComponents, numberOfComponents );
  covariance2.SetIdentity();
  covariance2[0][0] = 0.5;
  membershipFunction2->SetCovariance( covariance2 );
  membershipFunctionsVector.push_back( membershipFunction2.GetPointer() );

  // Add class labels
  ClassLabelVectorType & classLabelVector  = classLabelsObject->Get();

  typedef FilterType::ClassLabelType        ClassLabelType;

  ClassLabelType  class1 = 0;
  classLabelVector.push_back( class1 );

  ClassLabelType  class2 = 1;
  classLabelVector.push_back( class2 );

  //Set a decision rule type
  typedef itk::Statistics::MaximumDecisionRule2  DecisionRuleType;

  DecisionRuleType::Pointer    decisionRule = DecisionRuleType::New();
  filter->SetDecisionRule( decisionRule );

  //Generate samples from a Gaussian distribution with mean and 
  //covariance parameter as the first membership function. 
  //All the samples should be labeled by the classifier as
  //the first class

  typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
  NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();

  normalGenerator->Initialize( 101 );

  MeasurementVectorType mv;
  itk::Statistics::MeasurementVectorTraits::SetLength( mv, numberOfComponents );
  double mean = mean1[0];
  double standardDeviation = vcl_sqrt(covariance1[0][0]);
  unsigned int numberOfSampleEachClass = 10;
  for ( unsigned int i = 0; i < numberOfSampleEachClass; ++i )
    {
    mv[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
    sample->PushBack( mv );
    }

  //Add samples for the second gaussian
  mean = mean2[0];
  standardDeviation = vcl_sqrt(covariance1[0][0]);
  for ( unsigned int i = 0; i < numberOfSampleEachClass; ++i )
    {
    mv[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
    sample->PushBack( mv );
    }

  filter->SetInput( sample );

  try
    {
    filter->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE; 
    }

  //Check if the measurement vectors are correctly labelled. 
  const FilterType::MembershipSampleType* membershipSample = filter->GetOutput();
  FilterType::MembershipSampleType::ConstIterator iter = membershipSample->Begin();

  unsigned int sampleCounter = 0;
  while ( iter != membershipSample->End() )
    {
    if( sampleCounter < numberOfSampleEachClass )
      {
      if( iter.GetClassLabel() != class1 )
        {
        std::cerr << "Classification error: " << sampleCounter
                  << "\t" << iter.GetClassLabel() 
                  << "\tclass1=" << class1 << std::endl;
        return EXIT_FAILURE;
        }
      }
    else
      {
      if( iter.GetClassLabel() != class2 )
        {
        std::cerr << "Classification error: " << sampleCounter
                  << "\t" << iter.GetClassLabel() 
                  << "\tclass2=" << class2 << std::endl;
        return EXIT_FAILURE;
        }
      }
    ++iter;
    ++sampleCounter;
    }

  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}