1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkSampleClassifierFilterTest5.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkVariableLengthVector.h"
#include "itkVariableLengthVector.h"
#include "itkListSample.h"
#include "itkSampleClassifierFilter.h"
#include "itkMinimumDecisionRule2.h"
#include "itkNormalVariateGenerator.h"
#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
//run sample classifer using itk::VariableLengthVector type measurment vector
int itkSampleClassifierFilterTest5( int, char * [] )
{
const unsigned int numberOfComponents = 1;
typedef float MeasurementType;
const unsigned int numberOfClasses = 2;
typedef itk::VariableLengthVector< MeasurementType > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
typedef itk::Statistics::SampleClassifierFilter< SampleType > FilterType;
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType > GeneratorType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< GeneratorType::KdTreeType > EstimatorType;
//Generate a sample list
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( numberOfComponents );
typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
normalGenerator->Initialize( 101 );
//Populate the list with samples from two normal distributions
EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType mean1;
itk::Statistics::MeasurementVectorTraits::SetLength( mean1, numberOfComponents );
mean1[0] = 10.5;
EstimatorType::DistanceToCentroidMembershipFunctionType::CentroidType mean2;
itk::Statistics::MeasurementVectorTraits::SetLength( mean2, numberOfComponents );
mean2[0] = 200.5;
MeasurementVectorType mv;
itk::Statistics::MeasurementVectorTraits::SetLength( mv, numberOfComponents );
double mean = mean1[0];
double standardDeviation = 0.1;
unsigned int numberOfSampleEachClass = 10;
//Add sample from the first gaussian
for ( unsigned int i = 0; i < numberOfSampleEachClass; ++i )
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
sample->PushBack( mv );
}
//Add samples from the second gaussian
mean = mean2[0];
standardDeviation = 0.1;
for ( unsigned int i = 0; i < numberOfSampleEachClass; ++i )
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation ) + mean;
sample->PushBack( mv );
}
typedef FilterType::ClassLabelVectorObjectType ClassLabelVectorObjectType;
typedef FilterType::ClassLabelVectorType ClassLabelVectorType;
ClassLabelVectorObjectType::Pointer classLabelsObject = ClassLabelVectorObjectType::New();
/* Creating k-d tree */
GeneratorType::Pointer generator = GeneratorType::New();
generator->SetSample(sample.GetPointer());
unsigned int bucketSize = 1;
generator->SetBucketSize(bucketSize);
generator->GenerateData();
/* Searching kmeans */
EstimatorType::Pointer estimator = EstimatorType::New();
itk::Array< double > initialMeans(2);
initialMeans[0] = 5;
initialMeans[1] = 70;
estimator->SetParameters(initialMeans);
unsigned int maximumIteration = 100;
estimator->SetMaximumIteration(maximumIteration);
estimator->SetKdTree(generator->GetOutput());
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
// Add class labels
ClassLabelVectorType & classLabelVector = classLabelsObject->Get();
typedef FilterType::ClassLabelType ClassLabelType;
ClassLabelType class1 = 0;
classLabelVector.push_back( class1 );
ClassLabelType class2 = 1;
classLabelVector.push_back( class2 );
//Set a decision rule type
typedef itk::Statistics::MinimumDecisionRule2 DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
const FilterType::MembershipFunctionVectorObjectType *
membershipFunctionsObject = estimator->GetOutput();
/* Print out estimated parameters of the membership function */
const FilterType::MembershipFunctionVectorType
membershipFunctions = membershipFunctionsObject->Get();
FilterType::MembershipFunctionVectorType::const_iterator
begin = membershipFunctions.begin();
FilterType::MembershipFunctionVectorType::const_iterator
end = membershipFunctions.end();
FilterType::MembershipFunctionVectorType::const_iterator functionIter;
functionIter=begin;
unsigned int counter=1;
while( functionIter != end )
{
FilterType::MembershipFunctionPointer membershipFunction = *functionIter;
const EstimatorType::DistanceToCentroidMembershipFunctionType *
distanceMemberShpFunction =
dynamic_cast<const EstimatorType::DistanceToCentroidMembershipFunctionType*>(membershipFunction.GetPointer());
std::cout << "Centroid of the " << counter << " membership function "
<< distanceMemberShpFunction->GetCentroid() << std::endl;
functionIter++;
counter++;
}
//Instantiate and pass all the required inputs to the filter
FilterType::Pointer filter = FilterType::New();
filter->SetInput( sample );
filter->SetNumberOfClasses( numberOfClasses );
filter->SetClassLabels( classLabelsObject );
filter->SetDecisionRule( decisionRule );
filter->SetMembershipFunctions( membershipFunctionsObject );
try
{
filter->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
//Check if the measurement vectors are correctly labelled.
const FilterType::MembershipSampleType* membershipSample = filter->GetOutput();
FilterType::MembershipSampleType::ConstIterator iter = membershipSample->Begin();
unsigned int sampleCounter = 0;
while ( iter != membershipSample->End() )
{
if( sampleCounter < numberOfSampleEachClass )
{
if( iter.GetClassLabel() != class1 )
{
std::cerr << "Classification error: " << sampleCounter
<< "\t" << iter.GetMeasurementVector() << iter.GetClassLabel()
<< "\tclass1=" << class1 << std::endl;
return EXIT_FAILURE;
}
}
else
{
if( iter.GetClassLabel() != class2 )
{
std::cerr << "Classification error: " << sampleCounter
<< "\t" << iter.GetMeasurementVector() << iter.GetClassLabel()
<< "\tclass2=" << class2 << std::endl;
return EXIT_FAILURE;
}
}
++iter;
++sampleCounter;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|