1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkWeightedCentroidKdTreeGeneratorTest8.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkVector.h"
#include "itkMersenneTwisterRandomVariateGenerator.h"
#include "itkListSample.h"
#include "itkKdTree.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkEuclideanDistanceMetric.h"
#include <fstream>
// Generate Weighed centroid Kd tree generator using FixedArray
int itkWeightedCentroidKdTreeGeneratorTest8(int argc , char * argv [] )
{
if( argc < 4 )
{
std::cerr << "Missing parameters" << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " numberOfDataPoints numberOfTestPoints bucketSize [graphvizDotOutputFile]" << std::endl;
return EXIT_FAILURE;
}
// Random number generator
typedef itk::Statistics::MersenneTwisterRandomVariateGenerator NumberGeneratorType;
NumberGeneratorType::Pointer randomNumberGenerator = NumberGeneratorType::New();
randomNumberGenerator->Initialize();
const unsigned int measurementVectorSize = 2;
typedef itk::FixedArray< double, measurementVectorSize> MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
//
// Generate a sample of random points
//
const unsigned int numberOfDataPoints = atoi( argv[1] );
MeasurementVectorType mv;
for (unsigned int i = 0; i < numberOfDataPoints; ++i )
{
mv[0] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
mv[1] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
sample->PushBack( mv );
}
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType > TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
std::cout << treeGenerator->GetNameOfClass() << std::endl;
treeGenerator->Print( std::cout );
const unsigned int bucketSize = atoi( argv[3] );
treeGenerator->SetSample( sample );
treeGenerator->SetBucketSize( bucketSize );
treeGenerator->Update();
typedef TreeGeneratorType::KdTreeType TreeType;
typedef TreeType::NearestNeighbors NeighborsType;
typedef TreeType::KdTreeNodeType NodeType;
TreeType::Pointer tree = treeGenerator->GetOutput();
MeasurementVectorType queryPoint;
unsigned int numberOfNeighbors = 1;
TreeType::InstanceIdentifierVectorType neighbors;
MeasurementVectorType result;
MeasurementVectorType test_point;
MeasurementVectorType min_point;
min_point.Fill(0.0);
unsigned int numberOfFailedPoints = 0;
const unsigned int numberOfTestPoints = atoi( argv[2] );
//
// Check that for every point in the sample, its closest point is itself.
//
typedef itk::Statistics::EuclideanDistanceMetric< MeasurementVectorType > DistanceMetricType;
DistanceMetricType::Pointer distanceMetric = DistanceMetricType::New();
bool testFailed = false;
DistanceMetricType::OriginType origin;
::itk::Statistics::MeasurementVectorTraits::SetLength( origin, measurementVectorSize);
for( unsigned int k = 0; k < sample->Size(); k++ )
{
queryPoint = sample->GetMeasurementVector(k);
for ( unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i )
{
origin[i] = queryPoint[i];
}
distanceMetric->SetOrigin( origin );
tree->Search( queryPoint, numberOfNeighbors, neighbors );
for ( unsigned int i = 0; i < numberOfNeighbors; ++i )
{
const double distance =
distanceMetric->Evaluate( tree->GetMeasurementVector( neighbors[i] ));
if( distance > vnl_math::eps )
{
std::cout << "kd-tree knn search result:" << std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;
std::cout << "measurement vector : distance" << std::endl;
std::cout << "[" << tree->GetMeasurementVector( neighbors[i] )
<< "] : "
<< distance << std::endl;
testFailed = true;
}
}
}
if( testFailed )
{
std::cout << "Points failed to find themselves as closest-point" << std::endl;
}
//
// Generate a second sample of random points
// and use them to query the tree
//
for (unsigned int j = 0; j < numberOfTestPoints; ++j )
{
double min_dist = itk::NumericTraits< double >::max();
queryPoint[0] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
queryPoint[1] = randomNumberGenerator->GetNormalVariate( 0.0, 1.0 );
tree->Search( queryPoint, numberOfNeighbors, neighbors );
//
// The first neighbor should be the closest point.
//
result = tree->GetMeasurementVector( neighbors[0] );
//
// Compute the distance to the "presumed" nearest neighbor
//
double result_dist = vcl_sqrt(
(result[0] - queryPoint[0]) *
(result[0] - queryPoint[0]) +
(result[1] - queryPoint[1]) *
(result[1] - queryPoint[1])
);
//
// Compute the distance to all other points, to verify
// whether the first neighbor was the closest one or not.
//
for( unsigned int i = 0; i < numberOfDataPoints; ++i )
{
test_point = tree->GetMeasurementVector( i );
const double dist = vcl_sqrt(
(test_point[0] - queryPoint[0]) *
(test_point[0] - queryPoint[0]) +
(test_point[1] - queryPoint[1]) *
(test_point[1] - queryPoint[1])
);
if( dist < min_dist )
{
min_dist = dist;
min_point = test_point;
}
}
if( vcl_fabs( min_dist - result_dist ) > vnl_math::eps )
{
std::cerr << "Problem found " << std::endl;
std::cerr << "Query point " << queryPoint << std::endl;
std::cerr << "Reported closest point " << result
<< " distance " << result_dist << std::endl;
std::cerr << "Actual closest point " << min_point
<< " distance " << min_dist << std::endl;
std::cerr << "Difference = " << min_dist - result_dist
<< std::endl;
std::cerr << std::endl;
std::cerr << "Test FAILED." << std::endl;
numberOfFailedPoints++;
}
}
if( argc > 4 )
{
//
// Plot out the tree structure to the console in the format used by Graphviz dot
//
std::ofstream plotFile;
plotFile.open( argv[4] );
tree->PlotTree( plotFile );
plotFile.close();
}
if( numberOfFailedPoints )
{
std::cerr << numberOfFailedPoints << " failed out of "
<< numberOfTestPoints << " points " << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test PASSED." << std::endl;
return EXIT_SUCCESS;
}
|