File: itkNeuralNetworkIOTest.cxx

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (345 lines) | stat: -rw-r--r-- 13,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
/*=========================================================================

Program:   Insight Segmentation & Registration Toolkit
Module:    itkNeuralNetworkIOTest.cxx
Language:  C++
Date:      $Date$
Version:   $Revision$

Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.

This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.  See the above copyright notices for more information.

=========================================================================*/

#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif

#include "itkNeuralNetworkFileReader.h"
#include "itkNeuralNetworkFileWriter.h"
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkTwoHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkRBFNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkListSample.h"
#include "itkVector.h"

#include <iostream>

int itkNeuralNetworkIOTest(int argc,char* argv[])
{
  if( argc < 3 )
    {
    std::cerr << "Usage: " << argv[0] <<
      " NetworkConfigurationFile  TrainingData TemporaryFileLocation" << std::endl;
    return EXIT_FAILURE;
    }
  const std::string XORNetFileName(argv[1]);
  const std::string dataFileName(argv[2]);
  const std::string tempDataDirectory(argv[3]);

  const unsigned int num_input_nodes=2;
  const unsigned int num_output_nodes=1;
  typedef itk::Vector<double, num_input_nodes>   MeasurementVectorType;
  typedef itk::Vector<double, num_output_nodes>  TargetVectorType;

#if 1
  typedef itk::Statistics::MultilayerNeuralNetworkBase<
    MeasurementVectorType, TargetVectorType> NetworkType;

  typedef itk::Statistics::ListSample<MeasurementVectorType>    SampleType;
  typedef itk::Statistics::ListSample<TargetVectorType>         TargetType;

  typedef itk::Statistics::IterativeSupervisedTrainingFunction<
    SampleType, TargetType, double> TrainingFcnType;

  typedef itk::NeuralNetworkFileReader<NetworkType> ReaderType;

  typedef itk::NeuralNetworkFileWriter<NetworkType> WriterType;

  ReaderType::Pointer reader=ReaderType::New();

  //exercise Set/GetFilename method for code coverage
  std::string testName = tempDataDirectory+std::string("/Input.txt");
  reader->SetFileName( testName );


  if ( reader->GetFileName() != testName )
    {
    std::cerr << "Error in Set/Get Filename:" << std::endl;
    return EXIT_FAILURE;
    }

  //exercise Set/GetFilename method for code coverage
  reader->SetReadWeightValuesType( ReaderType::ASCII );

  if ( reader->GetReadWeightValuesType() != ReaderType::ASCII )
    {
    std::cerr << "Error in Set/Get ReadWeightValuesType:" << std::endl;
    return EXIT_FAILURE;
    }

  reader->SetReadWeightValuesType( ReaderType::IGNORE );

  // Read the Network topology from the configuration file
  reader->SetFileName(XORNetFileName);

  reader->Update();
  NetworkType::Pointer network = reader->GetOutput();

  // Initialize network
  network->Initialize();
  std::cout << "________Network after read from __________" << XORNetFileName << std::endl;
  std::cout << network << std::endl;

  // Read in training data
  MeasurementVectorType mv;
  TargetVectorType tv;
  SampleType::Pointer sample = SampleType::New();
  TargetType::Pointer targets = TargetType::New();
  sample->SetMeasurementVectorSize( num_input_nodes);
  targets->SetMeasurementVectorSize( num_output_nodes);
  std::ifstream infile1;
  infile1.open(dataFileName.c_str(), std::ios::in);

  infile1 >> mv[0] >> mv[1] >> tv[0];

  while (!infile1.eof())
    {
    std::cout << "Input =" << mv << std::endl;
    std::cout << "target =" << tv << std::endl;
    sample->PushBack(mv);
    targets->PushBack(tv);
    infile1 >> mv[0] >> mv[1] >> tv[0];
    }

  infile1.close();

  std::cout << sample->Size() << std::endl;


  //Network Simulation
  std::cout << sample->Size() << std::endl;
  std::cout << "Network Simulation" << std::endl;
  TargetVectorType ov;
  SampleType::ConstIterator iter1 = sample->Begin();
  TargetType::ConstIterator iter2 = targets->Begin();
  unsigned int error1 = 0;
  unsigned int error2 = 0;
  int flag = 0;

  while( iter1 != sample->End() )
    {
    mv = iter1.GetMeasurementVector();
    tv = iter2.GetMeasurementVector();
    ov.Set_vnl_vector(network->GenerateOutput(mv));
    flag = 0;
    if( vnl_math_abs(tv[0]-ov[0])>0.5 && !((tv[0]*ov[0])>0) )
      {
      flag = 1;
      }
    if( flag == 1 && vcl_floor(tv[0]+0.5) )
      {
      ++error1;
      }
    else if (flag == 1 && vcl_floor(tv[0]+0.5) == -1)
      {
      ++error2;
      }

    std::cout << "Network Input = " << mv << std::endl;
    std::cout << "Network Output = " << ov << std::endl;
    std::cout << "Target = " << tv << std::endl;
    ++iter1;
    ++iter2;
    }

  std::cout << "Among 4 measurement vectors, " << error1 + error2
    << " vectors are misclassified." << std::endl;
  std::cout << "Network Weights and Biases after Training= " << std::endl;
  std::cout << network << std::endl;


  //Write out network as it was read in
  WriterType::Pointer writer=WriterType::New();

  //exercise Set/GetFilename method for code coverage
  const std::string testNameOutput = tempDataDirectory+std::string("/Output.txt");
  writer->SetFileName( testNameOutput );

  if ( writer->GetFileName() != testNameOutput )
    {
    std::cerr << "Error in Set/Get Filename:" << std::endl;
    return EXIT_FAILURE;
    }

  //exercise Set/Get WriteWeightValuesType
  writer->SetWriteWeightValuesType( WriterType::ASCII );

  if ( writer->GetWriteWeightValuesType() != WriterType::ASCII )
    {
    std::cerr << "Error in Set/Get WriteWeightValuesType:" << std::endl;
    return EXIT_FAILURE;
    }

  writer->SetWriteWeightValuesType(WriterType::ASCII);
  writer->SetFileName(tempDataDirectory+std::string("/xornetASCII.txt"));
  writer->SetInput(network);

  if( writer->GetInput() != network )
    {
    std::cerr << "Error in SetInput()/GetInput() " << std::endl;
    return EXIT_FAILURE;
    }

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  //Reinitialize network and train

  network->InitializeWeights();
  TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
  trainingfcn->SetIterations(2000);
  trainingfcn->SetThreshold(0.001);
  trainingfcn->Train(network, sample, targets);

    {
    WriterType::Pointer writer2=WriterType::New();
    writer2->SetWriteWeightValuesType(WriterType::BINARY);
    writer2->SetFileName(tempDataDirectory+std::string("/xornetBinary.txt"));
    writer2->SetInput(network);
    writer2->Update();

    if( (error1 + error2) > 2 )
      {
      std::cout << "Test failed." << std::endl;
      return EXIT_FAILURE;
      }
    }
#endif
  //Now test reading and writing of OneHiddenLayerBackPropagationNeuralNetwork
    {
    const std::string TestOneHiddenLayerNetFileName=tempDataDirectory+std::string("/OneHiddenLayerNet.txt");
    typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
    OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet = OneHiddenLayerBackPropagationNeuralNetworkType::New();
    OneHiddenLayerNet->SetNumOfInputNodes(2);
    OneHiddenLayerNet->SetNumOfFirstHiddenNodes(2);
    OneHiddenLayerNet->SetNumOfOutputNodes(1);


    OneHiddenLayerNet->InitializeWeights();
    OneHiddenLayerNet->SetLearningRate(0.001);
    OneHiddenLayerNet->Initialize();
    std::cout << "___________________________________OneHiddenLayerNet: " << TestOneHiddenLayerNetFileName << std::endl;
    std::cout << OneHiddenLayerNet << std::endl;
    std::cout << "___________________________________OneHiddenLayerNet: " << TestOneHiddenLayerNetFileName << std::endl;
      {
      typedef itk::NeuralNetworkFileWriter<OneHiddenLayerBackPropagationNeuralNetworkType> OHLWriterType;
      OHLWriterType::Pointer writerOneHiddenLayerBackPropagation=OHLWriterType::New();
      writerOneHiddenLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
      writerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
      writerOneHiddenLayerBackPropagation->SetInput(OneHiddenLayerNet);
      writerOneHiddenLayerBackPropagation->Update();
      }
      {
      typedef itk::NeuralNetworkFileReader<OneHiddenLayerBackPropagationNeuralNetworkType> OHLReaderType;
      OHLReaderType::Pointer readerOneHiddenLayerBackPropagation=OHLReaderType::New();
      readerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
      readerOneHiddenLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
      readerOneHiddenLayerBackPropagation->Update();
      //The following line gives a compiler error
      OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet_ReadIn = readerOneHiddenLayerBackPropagation->GetOutput();
      }
    }
  //Now test reading and writing of TwoHiddenLayerBackPropagationNeuralNetwork
    {
    const std::string TestTwoHiddenLayerNetFileName=tempDataDirectory+std::string("/TwoHiddenLayerNet.txt");
    typedef itk::Statistics::TwoHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> TwoHiddenLayerBackPropagationNeuralNetworkType;
    TwoHiddenLayerBackPropagationNeuralNetworkType::Pointer TwoHiddenLayerNet = TwoHiddenLayerBackPropagationNeuralNetworkType::New();
    TwoHiddenLayerNet->SetNumOfInputNodes(7);
    TwoHiddenLayerNet->SetNumOfFirstHiddenNodes(5);
    TwoHiddenLayerNet->SetNumOfSecondHiddenNodes(3);
    TwoHiddenLayerNet->SetNumOfOutputNodes(1);

    typedef itk::NeuralNetworkFileWriter<TwoHiddenLayerBackPropagationNeuralNetworkType> OHLWriterType;

    TwoHiddenLayerNet->InitializeWeights();
    TwoHiddenLayerNet->SetLearningRate(0.001);
    TwoHiddenLayerNet->Initialize();
    std::cout << "___________________________________TwoHiddenLayerNet: " << TestTwoHiddenLayerNetFileName << std::endl;
    std::cout << TwoHiddenLayerNet << std::endl;
    std::cout << "___________________________________TwoHiddenLayerNet: " << TestTwoHiddenLayerNetFileName << std::endl;
      {
      OHLWriterType::Pointer writerTwoHiddenLayerBackPropagation=OHLWriterType::New();
      writerTwoHiddenLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
      writerTwoHiddenLayerBackPropagation->SetFileName(TestTwoHiddenLayerNetFileName);
      writerTwoHiddenLayerBackPropagation->SetInput(TwoHiddenLayerNet);
      writerTwoHiddenLayerBackPropagation->Update();
      }
      {
      typedef itk::NeuralNetworkFileReader<TwoHiddenLayerBackPropagationNeuralNetworkType> OHLReaderType;
      OHLReaderType::Pointer readerTwoHiddenLayerBackPropagation=OHLReaderType::New();
      readerTwoHiddenLayerBackPropagation->SetFileName(TestTwoHiddenLayerNetFileName);
      readerTwoHiddenLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
      readerTwoHiddenLayerBackPropagation->Update();
      //The following line gives a compiler error
      TwoHiddenLayerBackPropagationNeuralNetworkType::Pointer TwoHiddenLayerNet_ReadIn = readerTwoHiddenLayerBackPropagation->GetOutput();
      }
    }
#if 0 //This type of network does not seem to fit the file IO mechanism requirements.
  //Now test reading and writing of RBFNetwork
    {
    const std::string TestRBFLayerNetFileName=tempDataDirectory+std::string("/RBFLayerNet.txt");
    typedef itk::Statistics::RBFNetwork<MeasurementVectorType, TargetVectorType> RBFNetworkType;
    RBFNetworkType::Pointer RBFLayerNet = RBFNetworkType::New();
    RBFLayerNet->SetNumOfInputNodes(3);
    RBFLayerNet->SetNumOfFirstHiddenNodes(2);
    RBFLayerNet->SetNumOfOutputNodes(1);

    typedef itk::NeuralNetworkFileWriter<RBFNetworkType> OHLWriterType;

    RBFLayerNet->InitializeWeights();
    RBFLayerNet->SetLearningRate(0.001);
    MeasurementVectorType initialcenter2(3);
    initialcenter2[0]=99; //99;
    initialcenter2[1]=199; //199;
    initialcenter2[2]=300; //300;
    RBFLayerNet->SetCenter(initialcenter2);
    RBFLayerNet->SetRadius(50);

    RBFLayerNet->Initialize();
    std::cout << "___________________________________RBFLayerNet: " << TestRBFLayerNetFileName << std::endl;
    std::cout << RBFLayerNet << std::endl;
    std::cout << "___________________________________RBFLayerNet: " << TestRBFLayerNetFileName << std::endl;
      {
      OHLWriterType::Pointer writerRBFLayerBackPropagation=OHLWriterType::New();
      writerRBFLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
      writerRBFLayerBackPropagation->SetFileName(TestRBFLayerNetFileName);
      writerRBFLayerBackPropagation->SetInput(RBFLayerNet);
      writerRBFLayerBackPropagation->Update();
      }
      {
      typedef itk::NeuralNetworkFileReader<RBFNetworkType> OHLReaderType;
      OHLReaderType::Pointer readerRBFLayerBackPropagation=OHLReaderType::New();
      readerRBFLayerBackPropagation->SetFileName(TestRBFLayerNetFileName);
      readerRBFLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
      readerRBFLayerBackPropagation->Update();
      //The following line gives a compiler error
      RBFNetworkType::Pointer RBFLayerNet_ReadIn = readerRBFLayerBackPropagation->GetOutput();
      }
    }
#endif
  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;
}