1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*=========================================================================
Program: Insight Segmentation & Registration Toolkit
Module: itkNeuralNetworkIOTest.cxx
Language: C++
Date: $Date$
Version: $Revision$
Copyright (c) Insight Software Consortium. All rights reserved.
See ITKCopyright.txt or http://www.itk.org/HTML/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#if defined(_MSC_VER)
#pragma warning ( disable : 4786 )
#endif
#include "itkNeuralNetworkFileReader.h"
#include "itkNeuralNetworkFileWriter.h"
#include "itkOneHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkTwoHiddenLayerBackPropagationNeuralNetwork.h"
#include "itkRBFNetwork.h"
#include "itkIterativeSupervisedTrainingFunction.h"
#include "itkListSample.h"
#include "itkVector.h"
#include <iostream>
int itkNeuralNetworkIOTest(int argc,char* argv[])
{
if( argc < 3 )
{
std::cerr << "Usage: " << argv[0] <<
" NetworkConfigurationFile TrainingData TemporaryFileLocation" << std::endl;
return EXIT_FAILURE;
}
const std::string XORNetFileName(argv[1]);
const std::string dataFileName(argv[2]);
const std::string tempDataDirectory(argv[3]);
const unsigned int num_input_nodes=2;
const unsigned int num_output_nodes=1;
typedef itk::Vector<double, num_input_nodes> MeasurementVectorType;
typedef itk::Vector<double, num_output_nodes> TargetVectorType;
#if 1
typedef itk::Statistics::MultilayerNeuralNetworkBase<
MeasurementVectorType, TargetVectorType> NetworkType;
typedef itk::Statistics::ListSample<MeasurementVectorType> SampleType;
typedef itk::Statistics::ListSample<TargetVectorType> TargetType;
typedef itk::Statistics::IterativeSupervisedTrainingFunction<
SampleType, TargetType, double> TrainingFcnType;
typedef itk::NeuralNetworkFileReader<NetworkType> ReaderType;
typedef itk::NeuralNetworkFileWriter<NetworkType> WriterType;
ReaderType::Pointer reader=ReaderType::New();
//exercise Set/GetFilename method for code coverage
std::string testName = tempDataDirectory+std::string("/Input.txt");
reader->SetFileName( testName );
if ( reader->GetFileName() != testName )
{
std::cerr << "Error in Set/Get Filename:" << std::endl;
return EXIT_FAILURE;
}
//exercise Set/GetFilename method for code coverage
reader->SetReadWeightValuesType( ReaderType::ASCII );
if ( reader->GetReadWeightValuesType() != ReaderType::ASCII )
{
std::cerr << "Error in Set/Get ReadWeightValuesType:" << std::endl;
return EXIT_FAILURE;
}
reader->SetReadWeightValuesType( ReaderType::IGNORE );
// Read the Network topology from the configuration file
reader->SetFileName(XORNetFileName);
reader->Update();
NetworkType::Pointer network = reader->GetOutput();
// Initialize network
network->Initialize();
std::cout << "________Network after read from __________" << XORNetFileName << std::endl;
std::cout << network << std::endl;
// Read in training data
MeasurementVectorType mv;
TargetVectorType tv;
SampleType::Pointer sample = SampleType::New();
TargetType::Pointer targets = TargetType::New();
sample->SetMeasurementVectorSize( num_input_nodes);
targets->SetMeasurementVectorSize( num_output_nodes);
std::ifstream infile1;
infile1.open(dataFileName.c_str(), std::ios::in);
infile1 >> mv[0] >> mv[1] >> tv[0];
while (!infile1.eof())
{
std::cout << "Input =" << mv << std::endl;
std::cout << "target =" << tv << std::endl;
sample->PushBack(mv);
targets->PushBack(tv);
infile1 >> mv[0] >> mv[1] >> tv[0];
}
infile1.close();
std::cout << sample->Size() << std::endl;
//Network Simulation
std::cout << sample->Size() << std::endl;
std::cout << "Network Simulation" << std::endl;
TargetVectorType ov;
SampleType::ConstIterator iter1 = sample->Begin();
TargetType::ConstIterator iter2 = targets->Begin();
unsigned int error1 = 0;
unsigned int error2 = 0;
int flag = 0;
while( iter1 != sample->End() )
{
mv = iter1.GetMeasurementVector();
tv = iter2.GetMeasurementVector();
ov.Set_vnl_vector(network->GenerateOutput(mv));
flag = 0;
if( vnl_math_abs(tv[0]-ov[0])>0.5 && !((tv[0]*ov[0])>0) )
{
flag = 1;
}
if( flag == 1 && vcl_floor(tv[0]+0.5) )
{
++error1;
}
else if (flag == 1 && vcl_floor(tv[0]+0.5) == -1)
{
++error2;
}
std::cout << "Network Input = " << mv << std::endl;
std::cout << "Network Output = " << ov << std::endl;
std::cout << "Target = " << tv << std::endl;
++iter1;
++iter2;
}
std::cout << "Among 4 measurement vectors, " << error1 + error2
<< " vectors are misclassified." << std::endl;
std::cout << "Network Weights and Biases after Training= " << std::endl;
std::cout << network << std::endl;
//Write out network as it was read in
WriterType::Pointer writer=WriterType::New();
//exercise Set/GetFilename method for code coverage
const std::string testNameOutput = tempDataDirectory+std::string("/Output.txt");
writer->SetFileName( testNameOutput );
if ( writer->GetFileName() != testNameOutput )
{
std::cerr << "Error in Set/Get Filename:" << std::endl;
return EXIT_FAILURE;
}
//exercise Set/Get WriteWeightValuesType
writer->SetWriteWeightValuesType( WriterType::ASCII );
if ( writer->GetWriteWeightValuesType() != WriterType::ASCII )
{
std::cerr << "Error in Set/Get WriteWeightValuesType:" << std::endl;
return EXIT_FAILURE;
}
writer->SetWriteWeightValuesType(WriterType::ASCII);
writer->SetFileName(tempDataDirectory+std::string("/xornetASCII.txt"));
writer->SetInput(network);
if( writer->GetInput() != network )
{
std::cerr << "Error in SetInput()/GetInput() " << std::endl;
return EXIT_FAILURE;
}
try
{
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
//Reinitialize network and train
network->InitializeWeights();
TrainingFcnType::Pointer trainingfcn = TrainingFcnType::New();
trainingfcn->SetIterations(2000);
trainingfcn->SetThreshold(0.001);
trainingfcn->Train(network, sample, targets);
{
WriterType::Pointer writer2=WriterType::New();
writer2->SetWriteWeightValuesType(WriterType::BINARY);
writer2->SetFileName(tempDataDirectory+std::string("/xornetBinary.txt"));
writer2->SetInput(network);
writer2->Update();
if( (error1 + error2) > 2 )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
}
#endif
//Now test reading and writing of OneHiddenLayerBackPropagationNeuralNetwork
{
const std::string TestOneHiddenLayerNetFileName=tempDataDirectory+std::string("/OneHiddenLayerNet.txt");
typedef itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> OneHiddenLayerBackPropagationNeuralNetworkType;
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet = OneHiddenLayerBackPropagationNeuralNetworkType::New();
OneHiddenLayerNet->SetNumOfInputNodes(2);
OneHiddenLayerNet->SetNumOfFirstHiddenNodes(2);
OneHiddenLayerNet->SetNumOfOutputNodes(1);
OneHiddenLayerNet->InitializeWeights();
OneHiddenLayerNet->SetLearningRate(0.001);
OneHiddenLayerNet->Initialize();
std::cout << "___________________________________OneHiddenLayerNet: " << TestOneHiddenLayerNetFileName << std::endl;
std::cout << OneHiddenLayerNet << std::endl;
std::cout << "___________________________________OneHiddenLayerNet: " << TestOneHiddenLayerNetFileName << std::endl;
{
typedef itk::NeuralNetworkFileWriter<OneHiddenLayerBackPropagationNeuralNetworkType> OHLWriterType;
OHLWriterType::Pointer writerOneHiddenLayerBackPropagation=OHLWriterType::New();
writerOneHiddenLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
writerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
writerOneHiddenLayerBackPropagation->SetInput(OneHiddenLayerNet);
writerOneHiddenLayerBackPropagation->Update();
}
{
typedef itk::NeuralNetworkFileReader<OneHiddenLayerBackPropagationNeuralNetworkType> OHLReaderType;
OHLReaderType::Pointer readerOneHiddenLayerBackPropagation=OHLReaderType::New();
readerOneHiddenLayerBackPropagation->SetFileName(TestOneHiddenLayerNetFileName);
readerOneHiddenLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
readerOneHiddenLayerBackPropagation->Update();
//The following line gives a compiler error
OneHiddenLayerBackPropagationNeuralNetworkType::Pointer OneHiddenLayerNet_ReadIn = readerOneHiddenLayerBackPropagation->GetOutput();
}
}
//Now test reading and writing of TwoHiddenLayerBackPropagationNeuralNetwork
{
const std::string TestTwoHiddenLayerNetFileName=tempDataDirectory+std::string("/TwoHiddenLayerNet.txt");
typedef itk::Statistics::TwoHiddenLayerBackPropagationNeuralNetwork<MeasurementVectorType, TargetVectorType> TwoHiddenLayerBackPropagationNeuralNetworkType;
TwoHiddenLayerBackPropagationNeuralNetworkType::Pointer TwoHiddenLayerNet = TwoHiddenLayerBackPropagationNeuralNetworkType::New();
TwoHiddenLayerNet->SetNumOfInputNodes(7);
TwoHiddenLayerNet->SetNumOfFirstHiddenNodes(5);
TwoHiddenLayerNet->SetNumOfSecondHiddenNodes(3);
TwoHiddenLayerNet->SetNumOfOutputNodes(1);
typedef itk::NeuralNetworkFileWriter<TwoHiddenLayerBackPropagationNeuralNetworkType> OHLWriterType;
TwoHiddenLayerNet->InitializeWeights();
TwoHiddenLayerNet->SetLearningRate(0.001);
TwoHiddenLayerNet->Initialize();
std::cout << "___________________________________TwoHiddenLayerNet: " << TestTwoHiddenLayerNetFileName << std::endl;
std::cout << TwoHiddenLayerNet << std::endl;
std::cout << "___________________________________TwoHiddenLayerNet: " << TestTwoHiddenLayerNetFileName << std::endl;
{
OHLWriterType::Pointer writerTwoHiddenLayerBackPropagation=OHLWriterType::New();
writerTwoHiddenLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
writerTwoHiddenLayerBackPropagation->SetFileName(TestTwoHiddenLayerNetFileName);
writerTwoHiddenLayerBackPropagation->SetInput(TwoHiddenLayerNet);
writerTwoHiddenLayerBackPropagation->Update();
}
{
typedef itk::NeuralNetworkFileReader<TwoHiddenLayerBackPropagationNeuralNetworkType> OHLReaderType;
OHLReaderType::Pointer readerTwoHiddenLayerBackPropagation=OHLReaderType::New();
readerTwoHiddenLayerBackPropagation->SetFileName(TestTwoHiddenLayerNetFileName);
readerTwoHiddenLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
readerTwoHiddenLayerBackPropagation->Update();
//The following line gives a compiler error
TwoHiddenLayerBackPropagationNeuralNetworkType::Pointer TwoHiddenLayerNet_ReadIn = readerTwoHiddenLayerBackPropagation->GetOutput();
}
}
#if 0 //This type of network does not seem to fit the file IO mechanism requirements.
//Now test reading and writing of RBFNetwork
{
const std::string TestRBFLayerNetFileName=tempDataDirectory+std::string("/RBFLayerNet.txt");
typedef itk::Statistics::RBFNetwork<MeasurementVectorType, TargetVectorType> RBFNetworkType;
RBFNetworkType::Pointer RBFLayerNet = RBFNetworkType::New();
RBFLayerNet->SetNumOfInputNodes(3);
RBFLayerNet->SetNumOfFirstHiddenNodes(2);
RBFLayerNet->SetNumOfOutputNodes(1);
typedef itk::NeuralNetworkFileWriter<RBFNetworkType> OHLWriterType;
RBFLayerNet->InitializeWeights();
RBFLayerNet->SetLearningRate(0.001);
MeasurementVectorType initialcenter2(3);
initialcenter2[0]=99; //99;
initialcenter2[1]=199; //199;
initialcenter2[2]=300; //300;
RBFLayerNet->SetCenter(initialcenter2);
RBFLayerNet->SetRadius(50);
RBFLayerNet->Initialize();
std::cout << "___________________________________RBFLayerNet: " << TestRBFLayerNetFileName << std::endl;
std::cout << RBFLayerNet << std::endl;
std::cout << "___________________________________RBFLayerNet: " << TestRBFLayerNetFileName << std::endl;
{
OHLWriterType::Pointer writerRBFLayerBackPropagation=OHLWriterType::New();
writerRBFLayerBackPropagation->SetWriteWeightValuesType(OHLWriterType::ASCII);
writerRBFLayerBackPropagation->SetFileName(TestRBFLayerNetFileName);
writerRBFLayerBackPropagation->SetInput(RBFLayerNet);
writerRBFLayerBackPropagation->Update();
}
{
typedef itk::NeuralNetworkFileReader<RBFNetworkType> OHLReaderType;
OHLReaderType::Pointer readerRBFLayerBackPropagation=OHLReaderType::New();
readerRBFLayerBackPropagation->SetFileName(TestRBFLayerNetFileName);
readerRBFLayerBackPropagation->SetReadWeightValuesType( OHLReaderType::ASCII );
readerRBFLayerBackPropagation->Update();
//The following line gives a compiler error
RBFNetworkType::Pointer RBFLayerNet_ReadIn = readerRBFLayerBackPropagation->GetOutput();
}
}
#endif
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|