File: reorder.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (442 lines) | stat: -rw-r--r-- 15,959 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
  NrrdIO: stand-alone code for basic nrrd functionality
  Copyright (C) 2008, 2007, 2006, 2005  Gordon Kindlmann
  Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998  University of Utah
 
  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any
  damages arising from the use of this software.
 
  Permission is granted to anyone to use this software for any
  purpose, including commercial applications, and to alter it and
  redistribute it freely, subject to the following restrictions:
 
  1. The origin of this software must not be misrepresented; you must
     not claim that you wrote the original software. If you use this
     software in a product, an acknowledgment in the product
     documentation would be appreciated but is not required.
 
  2. Altered source versions must be plainly marked as such, and must
     not be misrepresented as being the original software.
 
  3. This notice may not be removed or altered from any source distribution.
*/

#include "NrrdIO.h"
#include "privateNrrd.h"

/*
******** nrrdInvertPerm()
**
** given an array (p) which represents a permutation of n elements,
** compute the inverse permutation ip.  The value of this function
** is not its core functionality, but all the error checking it
** provides.
*/
int
nrrdInvertPerm(unsigned int *invp, const unsigned int *pp, unsigned int nn) {
  static const char me[]="nrrdInvertPerm";
  int problem;
  unsigned int ii;

  if (!(invp && pp && nn > 0)) {
    biffAddf(NRRD, "%s: got NULL pointer or non-positive nn (%d)", me, nn);
    return 1;
  }
  
  /* use the given array "invp" as a temp buffer for validity checking */
  memset(invp, 0, nn*sizeof(int));
  for (ii=0; ii<nn; ii++) {
    if (!( pp[ii] <= nn-1)) {
      biffAddf(NRRD,
               "%s: permutation element #%d == %d out of bounds [0,%d]",
               me, ii, pp[ii], nn-1);
      return 1;
    }
    invp[pp[ii]]++;
  }
  problem = AIR_FALSE;
  for (ii=0; ii<nn; ii++) {
    if (1 != invp[ii]) {
      biffAddf(NRRD, "%s: element #%d mapped to %d times (should be once)",
               me, ii, invp[ii]);
      problem = AIR_TRUE;
    }
  }
  if (problem) {
    return 1;
  }

  /* the skinny */
  for (ii=0; ii<nn; ii++) {
    invp[pp[ii]] = ii;
  }

  return 0;
}

/*
******** nrrdAxesInsert
**
** like reshape, but preserves axis information on old axes, and
** this is only for adding a "stub" axis with length 1.  All other
** axis attributes are initialized as usual.
*/
int
nrrdAxesInsert(Nrrd *nout, const Nrrd *nin, unsigned int axis) {
  static const char me[]="nrrdAxesInsert", func[]="axinsert";
  unsigned int ai;
  
  if (!(nout && nin)) {
    biffAddf(NRRD, "%s: got NULL pointer", me);
    return 1;
  }
  if (!( axis <= nin->dim )) {
    biffAddf(NRRD, "%s: given axis (%d) outside valid range [0, %d]",
             me, axis, nin->dim);
    return 1;
  }
  if (NRRD_DIM_MAX == nin->dim) {
    biffAddf(NRRD, "%s: given nrrd already at NRRD_DIM_MAX (%d)",
             me, NRRD_DIM_MAX);
    return 1;
  }
  if (nout != nin) {
    if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT
                              | (nrrdStateKeyValuePairsPropagate
                                 ? 0
                                 : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) {
      biffAddf(NRRD, "%s:", me);
      return 1;
    }
  }
  nout->dim = 1 + nin->dim;
  for (ai=nin->dim; ai>axis; ai--) {
    _nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai-1]),
                      NRRD_AXIS_INFO_NONE);
  }
  /* the ONLY thing we can say about the new axis is its size */
  _nrrdAxisInfoInit(&(nout->axis[axis]));
  if (!nrrdStateKindNoop) {
    /* except maybe the kind */
    nout->axis[axis].kind = nrrdKindStub;
  }
  nout->axis[axis].size = 1;
  if (nrrdContentSet_va(nout, func, nin, "%d", axis)) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  /* all basic info has already been copied by nrrdCopy() above */
  return 0;
}

/*
******** nrrdAxesPermute
**
** changes the scanline ordering of the data in a nrrd
** 
** The basic means by which data is moved around is with memcpy().
** The goal is to call memcpy() as few times as possible, on memory 
** segments as large as possible.  Currently, this is done by 
** detecting how many of the low-index axes are left untouched by 
** the permutation- this constitutes a "scanline" which can be
** copied around as a unit.  For permuting the y and z axes of a
** matrix-x-y-z order matrix volume, this optimization produced a
** factor of 5 speed up (exhaustive multi-platform tests, of course).
**
** The axes[] array determines the permutation of the axes.
** axis[i] = j means: axis i in the output will be the input's axis j
** (axis[i] answers: "what do I put here", from the standpoint of the output,
** not "where do I put this", from the standpoint of the input)
*/
int
nrrdAxesPermute(Nrrd *nout, const Nrrd *nin, const unsigned int *axes) {
  static const char me[]="nrrdAxesPermute", func[]="permute";
  char buff1[NRRD_DIM_MAX*30], buff2[AIR_STRLEN_SMALL];
  size_t idxOut, idxIn,      /* indices for input and output scanlines */
    lineSize,                /* size of block of memory which can be
                                moved contiguously from input to output,
                                thought of as a "scanline" */
    numLines,                /* how many "scanlines" there are to permute */
    szIn[NRRD_DIM_MAX], *lszIn,
    szOut[NRRD_DIM_MAX], *lszOut,
    cIn[NRRD_DIM_MAX],
    cOut[NRRD_DIM_MAX];
  char *dataIn, *dataOut;
  int axmap[NRRD_DIM_MAX];
  unsigned int
    ai,                      /* running index along dimensions */
    lowPax,                  /* lowest axis which is "p"ermutated */
    ldim,                    /* nin->dim - lowPax */
    ip[NRRD_DIM_MAX+1],      /* inverse of permutation in "axes" */
    laxes[NRRD_DIM_MAX+1];   /* copy of axes[], but shifted down by lowPax
                                elements, to remove i such that i == axes[i] */
  airArray *mop;

  mop = airMopNew();
  if (!(nin && nout && axes)) {
    biffAddf(NRRD, "%s: got NULL pointer", me);
    airMopError(mop); return 1;
  }
  /* we don't actually need ip[], computing it is for error checking */
  if (nrrdInvertPerm(ip, axes, nin->dim)) {
    biffAddf(NRRD, "%s: couldn't compute axis permutation inverse", me);
    airMopError(mop); return 1;
  }
  /* this shouldn't actually be necessary .. */
  if (!nrrdElementSize(nin)) {
    biffAddf(NRRD, "%s: nrrd reports zero element size!", me);
    airMopError(mop); return 1;
  }
  
  for (ai=0; ai<nin->dim && axes[ai] == ai; ai++)
    ;
  lowPax = ai;

  /* allocate output by initial copy */
  if (nout != nin) {
    if (nrrdCopy(nout, nin)) {
      biffAddf(NRRD, "%s: trouble copying input", me);
      airMopError(mop); return 1;      
    }
    dataIn = (char*)nin->data;
  } else {
    dataIn = (char*)calloc(nrrdElementNumber(nin), nrrdElementSize(nin));
    if (!dataIn) {
      biffAddf(NRRD, "%s: couldn't create local copy of data", me);
      airMopError(mop); return 1;
    }
    airMopAdd(mop, dataIn, airFree, airMopAlways);
    memcpy(dataIn, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin));
  }
  if (lowPax < nin->dim) {
    /* if lowPax == nin->dim, then we were given the identity permutation, so
       there's nothing to do other than the copy already done.  Otherwise,
       here we are (actually, lowPax < nin->dim-1) */
    for (ai=0; ai<nin->dim; ai++) {
      axmap[ai] = axes[ai];
    }
    nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, szIn);
    if (nrrdAxisInfoCopy(nout, nin, axmap, NRRD_AXIS_INFO_NONE)) {
      biffAddf(NRRD, "%s:", me);
      airMopError(mop); return 1;
    }
    nrrdAxisInfoGet_nva(nout, nrrdAxisInfoSize, szOut);
    /* the skinny */
    lineSize = 1;
    for (ai=0; ai<lowPax; ai++) {
      lineSize *= szIn[ai];
    }
    numLines = nrrdElementNumber(nin)/lineSize;
    lineSize *= nrrdElementSize(nin);
    lszIn = szIn + lowPax;
    lszOut = szOut + lowPax;
    ldim = nin->dim - lowPax;
    memset(laxes, 0, NRRD_DIM_MAX*sizeof(unsigned int));
    for (ai=0; ai<ldim; ai++) {
      laxes[ai] = axes[ai+lowPax]-lowPax;
    }
    dataOut = (char *)nout->data;
    memset(cIn, 0, NRRD_DIM_MAX*sizeof(size_t));
    memset(cOut, 0, NRRD_DIM_MAX*sizeof(size_t));
    for (idxOut=0; idxOut<numLines; idxOut++) {
      /* in our representation of the coordinates of the start of the
         scanlines that we're copying, we are not even storing all the
         zeros in the coordinates prior to lowPax, and when we go to
         a linear index for the memcpy(), we multiply by lineSize */
      for (ai=0; ai<ldim; ai++) {
        cIn[laxes[ai]] = cOut[ai];
      }
      NRRD_INDEX_GEN(idxIn, cIn, lszIn, ldim);
      memcpy(dataOut + idxOut*lineSize, dataIn + idxIn*lineSize, lineSize);
      NRRD_COORD_INCR(cOut, lszOut, ldim, 0);
    }
    /* set content */
    strcpy(buff1, "");
    for (ai=0; ai<nin->dim; ai++) {
      sprintf(buff2, "%s%d", (ai ? "," : ""), axes[ai]);
      strcat(buff1, buff2);
    }
    if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) {
      biffAddf(NRRD, "%s:", me);
      airMopError(mop); return 1;
    }
    if (nout != nin) {
      if (nrrdBasicInfoCopy(nout, nin,
                            NRRD_BASIC_INFO_DATA_BIT
                            | NRRD_BASIC_INFO_TYPE_BIT
                            | NRRD_BASIC_INFO_BLOCKSIZE_BIT
                            | NRRD_BASIC_INFO_DIMENSION_BIT
                            | NRRD_BASIC_INFO_CONTENT_BIT
                            | NRRD_BASIC_INFO_COMMENTS_BIT
                            | (nrrdStateKeyValuePairsPropagate
                               ? 0
                               : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) {
        biffAddf(NRRD, "%s:", me);
        airMopError(mop); return 1;
      }
    }
  }
  airMopOkay(mop); 
  return 0;
}

/*
******** nrrdShuffle
**
** rearranges hyperslices of a nrrd along a given axis according to
** given permutation.  This could be used to on a 4D array,
** representing a 3D volume of vectors, to re-order the vector 
** components.
**
** the given permutation array must allocated for at least as long as
** the input nrrd along the chosen axis.  perm[j] = i means that the
** value at position j in the _new_ array should come from position i
** in the _old_array.  The standpoint is from the new, looking at
** where to find the values amid the old array (perm answers "what do
** I put here", not "where do I put this").  This allows multiple
** positions in the new array to copy from the same old position, and
** insures that there is an source for all positions along the new
** array.
*/
int
nrrdShuffle(Nrrd *nout, const Nrrd *nin, unsigned int axis,
            const size_t *perm) {
  static const char me[]="nrrdShuffle", func[]="shuffle";
  char buff2[AIR_STRLEN_SMALL];
  /* Sun Feb 8 13:13:58 CST 2009: There was a memory bug here caused
     by using the same buff1[NRRD_DIM_MAX*30] declaration that had
     worked fine for nrrdAxesPermute and nrrdReshape, but does NOT
     work here because now samples along an axes are re-ordered, not
     axes, so its often not allocated for long enough to hold the
     string that's printed to it. Ideally there'd be another argument
     that says whether to document the shuffle in the content string,
     which would mean an API change.  Or, we can use a secret
     heuristic (or maybe later a nrrdState variable) for determining
     when an axis is short enough to make documenting the shuffle
     interesting.  This is useful since functions like nrrdFlip()
     probably do *not* need the shuffle (the sample reversal) to be
     documented for long axes */
#define LONGEST_INTERESTING_AXIS 42
  char buff1[LONGEST_INTERESTING_AXIS*30];
  unsigned int 
    ai, ldim, len,
    cIn[NRRD_DIM_MAX+1],
    cOut[NRRD_DIM_MAX+1];
  size_t idxIn, idxOut, lineSize, numLines, size[NRRD_DIM_MAX], *lsize;
  char *dataIn, *dataOut;

  if (!(nin && nout && perm)) {
    biffAddf(NRRD, "%s: got NULL pointer", me);
    return 1;
  }
  if (nout == nin) {
    biffAddf(NRRD, "%s: nout==nin disallowed", me);
    return 1;
  }
  if (!( axis < nin->dim )) {
    biffAddf(NRRD, "%s: axis %d outside valid range [0,%d]", 
             me, axis, nin->dim-1);
    return 1;
  }
  len = AIR_CAST(unsigned int, nin->axis[axis].size);
  for (ai=0; ai<len; ai++) {
    if (!( perm[ai] < len )) {
      biffAddf(NRRD, "%s: perm[%d] (" _AIR_SIZE_T_CNV
               ") outside valid range [0,%d]", me, ai, perm[ai], len-1);
      return 1;
    }
  }
  /* this shouldn't actually be necessary .. */
  if (!nrrdElementSize(nin)) {
    biffAddf(NRRD, "%s: nrrd reports zero element size!", me);
    return 1;
  }
  /* set information in new volume */
  nout->blockSize = nin->blockSize;
  nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, size);
  if (nrrdMaybeAlloc_nva(nout, nin->type, nin->dim, size)) {
    biffAddf(NRRD, "%s: failed to allocate output", me);
    return 1;
  }
  if (nrrdAxisInfoCopy(nout, nin, NULL, NRRD_AXIS_INFO_NONE)) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  /* the min and max along the shuffled axis are now meaningless */
  nout->axis[axis].min = nout->axis[axis].max = AIR_NAN;
  /* do the safe thing first */
  nout->axis[axis].kind = _nrrdKindAltered(nin->axis[axis].kind, AIR_FALSE);
  /* try cleverness */
  if (!nrrdStateKindNoop) {
    if (0 == nrrdKindSize(nin->axis[axis].kind)
        || nrrdKindStub == nin->axis[axis].kind
        || nrrdKindScalar == nin->axis[axis].kind
        || nrrdKind2Vector == nin->axis[axis].kind
        || nrrdKind3Color == nin->axis[axis].kind
        || nrrdKind4Color == nin->axis[axis].kind
        || nrrdKind3Vector == nin->axis[axis].kind
        || nrrdKind3Gradient == nin->axis[axis].kind
        || nrrdKind3Normal == nin->axis[axis].kind
        || nrrdKind4Vector == nin->axis[axis].kind) {
      /* these kinds have no intrinsic ordering */
      nout->axis[axis].kind = nin->axis[axis].kind;
    }
  }
  /* the skinny */
  lineSize = 1;
  for (ai=0; ai<axis; ai++) {
    lineSize *= nin->axis[ai].size;
  }
  numLines = nrrdElementNumber(nin)/lineSize;
  lineSize *= nrrdElementSize(nin);
  lsize = size + axis;
  ldim = nin->dim - axis;
  dataIn = (char *)nin->data;
  dataOut = (char *)nout->data;
  memset(cIn, 0, (NRRD_DIM_MAX+1)*sizeof(int));
  memset(cOut, 0, (NRRD_DIM_MAX+1)*sizeof(int));
  for (idxOut=0; idxOut<numLines; idxOut++) {
    memcpy(cIn, cOut, ldim*sizeof(int));
    cIn[0] = AIR_CAST(unsigned int, perm[cOut[0]]);
    NRRD_INDEX_GEN(idxIn, cIn, lsize, ldim);
    NRRD_INDEX_GEN(idxOut, cOut, lsize, ldim);
    memcpy(dataOut + idxOut*lineSize, dataIn + idxIn*lineSize, lineSize);
    NRRD_COORD_INCR(cOut, lsize, ldim, 0);
  }
  /* Set content. The LONGEST_INTERESTING_AXIS hack avoids the
     previous array out-of-bounds bug */
  if (len <= LONGEST_INTERESTING_AXIS) {
    strcpy(buff1, "");
    for (ai=0; ai<len; ai++) {
      sprintf(buff2, "%s" _AIR_SIZE_T_CNV, (ai ? "," : ""), perm[ai]);
      strcat(buff1, buff2);
    }
    if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) {
      biffAddf(NRRD, "%s:", me);
      return 1;
    }
  } else {
    if (nrrdContentSet_va(nout, func, nin, "")) {
      biffAddf(NRRD, "%s:", me);
      return 1;
    }
  }
  if (nrrdBasicInfoCopy(nout, nin,
                        NRRD_BASIC_INFO_DATA_BIT
                        | NRRD_BASIC_INFO_TYPE_BIT
                        | NRRD_BASIC_INFO_BLOCKSIZE_BIT
                        | NRRD_BASIC_INFO_DIMENSION_BIT
                        | NRRD_BASIC_INFO_CONTENT_BIT
                        | NRRD_BASIC_INFO_COMMENTS_BIT
                        | (nrrdStateKeyValuePairsPropagate
                           ? 0
                           : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  
  return 0;
#undef LONGEST_INTERESTING_AXIS
}