1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
/*
NrrdIO: stand-alone code for basic nrrd functionality
Copyright (C) 2008, 2007, 2006, 2005 Gordon Kindlmann
Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998 University of Utah
This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any
damages arising from the use of this software.
Permission is granted to anyone to use this software for any
purpose, including commercial applications, and to alter it and
redistribute it freely, subject to the following restrictions:
1. The origin of this software must not be misrepresented; you must
not claim that you wrote the original software. If you use this
software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must
not be misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.
*/
#include "NrrdIO.h"
#include "privateNrrd.h"
/*
******** nrrdInvertPerm()
**
** given an array (p) which represents a permutation of n elements,
** compute the inverse permutation ip. The value of this function
** is not its core functionality, but all the error checking it
** provides.
*/
int
nrrdInvertPerm(unsigned int *invp, const unsigned int *pp, unsigned int nn) {
static const char me[]="nrrdInvertPerm";
int problem;
unsigned int ii;
if (!(invp && pp && nn > 0)) {
biffAddf(NRRD, "%s: got NULL pointer or non-positive nn (%d)", me, nn);
return 1;
}
/* use the given array "invp" as a temp buffer for validity checking */
memset(invp, 0, nn*sizeof(int));
for (ii=0; ii<nn; ii++) {
if (!( pp[ii] <= nn-1)) {
biffAddf(NRRD,
"%s: permutation element #%d == %d out of bounds [0,%d]",
me, ii, pp[ii], nn-1);
return 1;
}
invp[pp[ii]]++;
}
problem = AIR_FALSE;
for (ii=0; ii<nn; ii++) {
if (1 != invp[ii]) {
biffAddf(NRRD, "%s: element #%d mapped to %d times (should be once)",
me, ii, invp[ii]);
problem = AIR_TRUE;
}
}
if (problem) {
return 1;
}
/* the skinny */
for (ii=0; ii<nn; ii++) {
invp[pp[ii]] = ii;
}
return 0;
}
/*
******** nrrdAxesInsert
**
** like reshape, but preserves axis information on old axes, and
** this is only for adding a "stub" axis with length 1. All other
** axis attributes are initialized as usual.
*/
int
nrrdAxesInsert(Nrrd *nout, const Nrrd *nin, unsigned int axis) {
static const char me[]="nrrdAxesInsert", func[]="axinsert";
unsigned int ai;
if (!(nout && nin)) {
biffAddf(NRRD, "%s: got NULL pointer", me);
return 1;
}
if (!( axis <= nin->dim )) {
biffAddf(NRRD, "%s: given axis (%d) outside valid range [0, %d]",
me, axis, nin->dim);
return 1;
}
if (NRRD_DIM_MAX == nin->dim) {
biffAddf(NRRD, "%s: given nrrd already at NRRD_DIM_MAX (%d)",
me, NRRD_DIM_MAX);
return 1;
}
if (nout != nin) {
if (_nrrdCopy(nout, nin, (NRRD_BASIC_INFO_COMMENTS_BIT
| (nrrdStateKeyValuePairsPropagate
? 0
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT)))) {
biffAddf(NRRD, "%s:", me);
return 1;
}
}
nout->dim = 1 + nin->dim;
for (ai=nin->dim; ai>axis; ai--) {
_nrrdAxisInfoCopy(&(nout->axis[ai]), &(nin->axis[ai-1]),
NRRD_AXIS_INFO_NONE);
}
/* the ONLY thing we can say about the new axis is its size */
_nrrdAxisInfoInit(&(nout->axis[axis]));
if (!nrrdStateKindNoop) {
/* except maybe the kind */
nout->axis[axis].kind = nrrdKindStub;
}
nout->axis[axis].size = 1;
if (nrrdContentSet_va(nout, func, nin, "%d", axis)) {
biffAddf(NRRD, "%s:", me);
return 1;
}
/* all basic info has already been copied by nrrdCopy() above */
return 0;
}
/*
******** nrrdAxesPermute
**
** changes the scanline ordering of the data in a nrrd
**
** The basic means by which data is moved around is with memcpy().
** The goal is to call memcpy() as few times as possible, on memory
** segments as large as possible. Currently, this is done by
** detecting how many of the low-index axes are left untouched by
** the permutation- this constitutes a "scanline" which can be
** copied around as a unit. For permuting the y and z axes of a
** matrix-x-y-z order matrix volume, this optimization produced a
** factor of 5 speed up (exhaustive multi-platform tests, of course).
**
** The axes[] array determines the permutation of the axes.
** axis[i] = j means: axis i in the output will be the input's axis j
** (axis[i] answers: "what do I put here", from the standpoint of the output,
** not "where do I put this", from the standpoint of the input)
*/
int
nrrdAxesPermute(Nrrd *nout, const Nrrd *nin, const unsigned int *axes) {
static const char me[]="nrrdAxesPermute", func[]="permute";
char buff1[NRRD_DIM_MAX*30], buff2[AIR_STRLEN_SMALL];
size_t idxOut, idxIn, /* indices for input and output scanlines */
lineSize, /* size of block of memory which can be
moved contiguously from input to output,
thought of as a "scanline" */
numLines, /* how many "scanlines" there are to permute */
szIn[NRRD_DIM_MAX], *lszIn,
szOut[NRRD_DIM_MAX], *lszOut,
cIn[NRRD_DIM_MAX],
cOut[NRRD_DIM_MAX];
char *dataIn, *dataOut;
int axmap[NRRD_DIM_MAX];
unsigned int
ai, /* running index along dimensions */
lowPax, /* lowest axis which is "p"ermutated */
ldim, /* nin->dim - lowPax */
ip[NRRD_DIM_MAX+1], /* inverse of permutation in "axes" */
laxes[NRRD_DIM_MAX+1]; /* copy of axes[], but shifted down by lowPax
elements, to remove i such that i == axes[i] */
airArray *mop;
mop = airMopNew();
if (!(nin && nout && axes)) {
biffAddf(NRRD, "%s: got NULL pointer", me);
airMopError(mop); return 1;
}
/* we don't actually need ip[], computing it is for error checking */
if (nrrdInvertPerm(ip, axes, nin->dim)) {
biffAddf(NRRD, "%s: couldn't compute axis permutation inverse", me);
airMopError(mop); return 1;
}
/* this shouldn't actually be necessary .. */
if (!nrrdElementSize(nin)) {
biffAddf(NRRD, "%s: nrrd reports zero element size!", me);
airMopError(mop); return 1;
}
for (ai=0; ai<nin->dim && axes[ai] == ai; ai++)
;
lowPax = ai;
/* allocate output by initial copy */
if (nout != nin) {
if (nrrdCopy(nout, nin)) {
biffAddf(NRRD, "%s: trouble copying input", me);
airMopError(mop); return 1;
}
dataIn = (char*)nin->data;
} else {
dataIn = (char*)calloc(nrrdElementNumber(nin), nrrdElementSize(nin));
if (!dataIn) {
biffAddf(NRRD, "%s: couldn't create local copy of data", me);
airMopError(mop); return 1;
}
airMopAdd(mop, dataIn, airFree, airMopAlways);
memcpy(dataIn, nin->data, nrrdElementNumber(nin)*nrrdElementSize(nin));
}
if (lowPax < nin->dim) {
/* if lowPax == nin->dim, then we were given the identity permutation, so
there's nothing to do other than the copy already done. Otherwise,
here we are (actually, lowPax < nin->dim-1) */
for (ai=0; ai<nin->dim; ai++) {
axmap[ai] = axes[ai];
}
nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, szIn);
if (nrrdAxisInfoCopy(nout, nin, axmap, NRRD_AXIS_INFO_NONE)) {
biffAddf(NRRD, "%s:", me);
airMopError(mop); return 1;
}
nrrdAxisInfoGet_nva(nout, nrrdAxisInfoSize, szOut);
/* the skinny */
lineSize = 1;
for (ai=0; ai<lowPax; ai++) {
lineSize *= szIn[ai];
}
numLines = nrrdElementNumber(nin)/lineSize;
lineSize *= nrrdElementSize(nin);
lszIn = szIn + lowPax;
lszOut = szOut + lowPax;
ldim = nin->dim - lowPax;
memset(laxes, 0, NRRD_DIM_MAX*sizeof(unsigned int));
for (ai=0; ai<ldim; ai++) {
laxes[ai] = axes[ai+lowPax]-lowPax;
}
dataOut = (char *)nout->data;
memset(cIn, 0, NRRD_DIM_MAX*sizeof(size_t));
memset(cOut, 0, NRRD_DIM_MAX*sizeof(size_t));
for (idxOut=0; idxOut<numLines; idxOut++) {
/* in our representation of the coordinates of the start of the
scanlines that we're copying, we are not even storing all the
zeros in the coordinates prior to lowPax, and when we go to
a linear index for the memcpy(), we multiply by lineSize */
for (ai=0; ai<ldim; ai++) {
cIn[laxes[ai]] = cOut[ai];
}
NRRD_INDEX_GEN(idxIn, cIn, lszIn, ldim);
memcpy(dataOut + idxOut*lineSize, dataIn + idxIn*lineSize, lineSize);
NRRD_COORD_INCR(cOut, lszOut, ldim, 0);
}
/* set content */
strcpy(buff1, "");
for (ai=0; ai<nin->dim; ai++) {
sprintf(buff2, "%s%d", (ai ? "," : ""), axes[ai]);
strcat(buff1, buff2);
}
if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) {
biffAddf(NRRD, "%s:", me);
airMopError(mop); return 1;
}
if (nout != nin) {
if (nrrdBasicInfoCopy(nout, nin,
NRRD_BASIC_INFO_DATA_BIT
| NRRD_BASIC_INFO_TYPE_BIT
| NRRD_BASIC_INFO_BLOCKSIZE_BIT
| NRRD_BASIC_INFO_DIMENSION_BIT
| NRRD_BASIC_INFO_CONTENT_BIT
| NRRD_BASIC_INFO_COMMENTS_BIT
| (nrrdStateKeyValuePairsPropagate
? 0
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) {
biffAddf(NRRD, "%s:", me);
airMopError(mop); return 1;
}
}
}
airMopOkay(mop);
return 0;
}
/*
******** nrrdShuffle
**
** rearranges hyperslices of a nrrd along a given axis according to
** given permutation. This could be used to on a 4D array,
** representing a 3D volume of vectors, to re-order the vector
** components.
**
** the given permutation array must allocated for at least as long as
** the input nrrd along the chosen axis. perm[j] = i means that the
** value at position j in the _new_ array should come from position i
** in the _old_array. The standpoint is from the new, looking at
** where to find the values amid the old array (perm answers "what do
** I put here", not "where do I put this"). This allows multiple
** positions in the new array to copy from the same old position, and
** insures that there is an source for all positions along the new
** array.
*/
int
nrrdShuffle(Nrrd *nout, const Nrrd *nin, unsigned int axis,
const size_t *perm) {
static const char me[]="nrrdShuffle", func[]="shuffle";
char buff2[AIR_STRLEN_SMALL];
/* Sun Feb 8 13:13:58 CST 2009: There was a memory bug here caused
by using the same buff1[NRRD_DIM_MAX*30] declaration that had
worked fine for nrrdAxesPermute and nrrdReshape, but does NOT
work here because now samples along an axes are re-ordered, not
axes, so its often not allocated for long enough to hold the
string that's printed to it. Ideally there'd be another argument
that says whether to document the shuffle in the content string,
which would mean an API change. Or, we can use a secret
heuristic (or maybe later a nrrdState variable) for determining
when an axis is short enough to make documenting the shuffle
interesting. This is useful since functions like nrrdFlip()
probably do *not* need the shuffle (the sample reversal) to be
documented for long axes */
#define LONGEST_INTERESTING_AXIS 42
char buff1[LONGEST_INTERESTING_AXIS*30];
unsigned int
ai, ldim, len,
cIn[NRRD_DIM_MAX+1],
cOut[NRRD_DIM_MAX+1];
size_t idxIn, idxOut, lineSize, numLines, size[NRRD_DIM_MAX], *lsize;
char *dataIn, *dataOut;
if (!(nin && nout && perm)) {
biffAddf(NRRD, "%s: got NULL pointer", me);
return 1;
}
if (nout == nin) {
biffAddf(NRRD, "%s: nout==nin disallowed", me);
return 1;
}
if (!( axis < nin->dim )) {
biffAddf(NRRD, "%s: axis %d outside valid range [0,%d]",
me, axis, nin->dim-1);
return 1;
}
len = AIR_CAST(unsigned int, nin->axis[axis].size);
for (ai=0; ai<len; ai++) {
if (!( perm[ai] < len )) {
biffAddf(NRRD, "%s: perm[%d] (" _AIR_SIZE_T_CNV
") outside valid range [0,%d]", me, ai, perm[ai], len-1);
return 1;
}
}
/* this shouldn't actually be necessary .. */
if (!nrrdElementSize(nin)) {
biffAddf(NRRD, "%s: nrrd reports zero element size!", me);
return 1;
}
/* set information in new volume */
nout->blockSize = nin->blockSize;
nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, size);
if (nrrdMaybeAlloc_nva(nout, nin->type, nin->dim, size)) {
biffAddf(NRRD, "%s: failed to allocate output", me);
return 1;
}
if (nrrdAxisInfoCopy(nout, nin, NULL, NRRD_AXIS_INFO_NONE)) {
biffAddf(NRRD, "%s:", me);
return 1;
}
/* the min and max along the shuffled axis are now meaningless */
nout->axis[axis].min = nout->axis[axis].max = AIR_NAN;
/* do the safe thing first */
nout->axis[axis].kind = _nrrdKindAltered(nin->axis[axis].kind, AIR_FALSE);
/* try cleverness */
if (!nrrdStateKindNoop) {
if (0 == nrrdKindSize(nin->axis[axis].kind)
|| nrrdKindStub == nin->axis[axis].kind
|| nrrdKindScalar == nin->axis[axis].kind
|| nrrdKind2Vector == nin->axis[axis].kind
|| nrrdKind3Color == nin->axis[axis].kind
|| nrrdKind4Color == nin->axis[axis].kind
|| nrrdKind3Vector == nin->axis[axis].kind
|| nrrdKind3Gradient == nin->axis[axis].kind
|| nrrdKind3Normal == nin->axis[axis].kind
|| nrrdKind4Vector == nin->axis[axis].kind) {
/* these kinds have no intrinsic ordering */
nout->axis[axis].kind = nin->axis[axis].kind;
}
}
/* the skinny */
lineSize = 1;
for (ai=0; ai<axis; ai++) {
lineSize *= nin->axis[ai].size;
}
numLines = nrrdElementNumber(nin)/lineSize;
lineSize *= nrrdElementSize(nin);
lsize = size + axis;
ldim = nin->dim - axis;
dataIn = (char *)nin->data;
dataOut = (char *)nout->data;
memset(cIn, 0, (NRRD_DIM_MAX+1)*sizeof(int));
memset(cOut, 0, (NRRD_DIM_MAX+1)*sizeof(int));
for (idxOut=0; idxOut<numLines; idxOut++) {
memcpy(cIn, cOut, ldim*sizeof(int));
cIn[0] = AIR_CAST(unsigned int, perm[cOut[0]]);
NRRD_INDEX_GEN(idxIn, cIn, lsize, ldim);
NRRD_INDEX_GEN(idxOut, cOut, lsize, ldim);
memcpy(dataOut + idxOut*lineSize, dataIn + idxIn*lineSize, lineSize);
NRRD_COORD_INCR(cOut, lsize, ldim, 0);
}
/* Set content. The LONGEST_INTERESTING_AXIS hack avoids the
previous array out-of-bounds bug */
if (len <= LONGEST_INTERESTING_AXIS) {
strcpy(buff1, "");
for (ai=0; ai<len; ai++) {
sprintf(buff2, "%s" _AIR_SIZE_T_CNV, (ai ? "," : ""), perm[ai]);
strcat(buff1, buff2);
}
if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) {
biffAddf(NRRD, "%s:", me);
return 1;
}
} else {
if (nrrdContentSet_va(nout, func, nin, "")) {
biffAddf(NRRD, "%s:", me);
return 1;
}
}
if (nrrdBasicInfoCopy(nout, nin,
NRRD_BASIC_INFO_DATA_BIT
| NRRD_BASIC_INFO_TYPE_BIT
| NRRD_BASIC_INFO_BLOCKSIZE_BIT
| NRRD_BASIC_INFO_DIMENSION_BIT
| NRRD_BASIC_INFO_CONTENT_BIT
| NRRD_BASIC_INFO_COMMENTS_BIT
| (nrrdStateKeyValuePairsPropagate
? 0
: NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) {
biffAddf(NRRD, "%s:", me);
return 1;
}
return 0;
#undef LONGEST_INTERESTING_AXIS
}
|