File: subset.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (342 lines) | stat: -rw-r--r-- 12,329 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/*
  NrrdIO: stand-alone code for basic nrrd functionality
  Copyright (C) 2008, 2007, 2006, 2005  Gordon Kindlmann
  Copyright (C) 2004, 2003, 2002, 2001, 2000, 1999, 1998  University of Utah
 
  This software is provided 'as-is', without any express or implied
  warranty.  In no event will the authors be held liable for any
  damages arising from the use of this software.
 
  Permission is granted to anyone to use this software for any
  purpose, including commercial applications, and to alter it and
  redistribute it freely, subject to the following restrictions:
 
  1. The origin of this software must not be misrepresented; you must
     not claim that you wrote the original software. If you use this
     software in a product, an acknowledgment in the product
     documentation would be appreciated but is not required.
 
  2. Altered source versions must be plainly marked as such, and must
     not be misrepresented as being the original software.
 
  3. This notice may not be removed or altered from any source distribution.
*/

#include "NrrdIO.h"
#include "privateNrrd.h"

/*
******** nrrdSlice()
**
** slices a nrrd along a given axis, at a given position.
**
** This is a newer version of the procedure, which is simpler, faster,
** and requires less memory overhead than the first one.  It is based
** on the observation that any slice is a periodic square-wave pattern
** in the original data (viewed as a one- dimensional array).  The
** characteristics of that periodic pattern are how far from the
** beginning it starts (offset), the length of the "on" part (length),
** the period (period), and the number of periods (numper). 
*/
int
nrrdSlice(Nrrd *nout, const Nrrd *nin, unsigned int saxi, size_t pos) {
  static const char me[]="nrrdSlice", func[]="slice";
  size_t 
    I, 
    rowLen,                  /* length of segment */
    colStep,                 /* distance between start of each segment */
    colLen,                  /* number of periods */
    szOut[NRRD_DIM_MAX];
  unsigned int ai, outdim;
  int map[NRRD_DIM_MAX];
  char *src, *dest;

  if (!(nin && nout)) {
    biffAddf(NRRD, "%s: got NULL pointer", me);
    return 1;
  }
  if (nout == nin) {
    biffAddf(NRRD, "%s: nout==nin disallowed", me);
    return 1;
  }
  if (1 == nin->dim) {
    biffAddf(NRRD, "%s: can't slice a 1-D nrrd; use nrrd{I,F,D}Lookup[]",
             me);
    return 1;
  }
  if (!( saxi < nin->dim )) {
    biffAddf(NRRD, "%s: slice axis %d out of bounds (0 to %d)", 
             me, saxi, nin->dim-1);
    return 1;
  }
  if (!( pos < nin->axis[saxi].size )) {
    biffAddf(NRRD, "%s: position " _AIR_SIZE_T_CNV 
             " out of bounds (0 to " _AIR_SIZE_T_CNV  ")", 
             me, pos, nin->axis[saxi].size-1);
    return 1;
  }
  /* this shouldn't actually be necessary .. */
  if (!nrrdElementSize(nin)) {
    biffAddf(NRRD, "%s: nrrd reports zero element size!", me);
    return 1;
  }
  
  /* set up control variables */
  rowLen = colLen = 1;
  for (ai=0; ai<nin->dim; ai++) {
    if (ai < saxi) {
      rowLen *= nin->axis[ai].size;
    } else if (ai > saxi) {
      colLen *= nin->axis[ai].size;
    }
  }
  rowLen *= nrrdElementSize(nin);
  colStep = rowLen*nin->axis[saxi].size;

  outdim = nin->dim-1;
  for (ai=0; ai<outdim; ai++) {
    map[ai] = ai + (ai >= saxi);
    szOut[ai] = nin->axis[map[ai]].size;
  }
  nout->blockSize = nin->blockSize;
  if (nrrdMaybeAlloc_nva(nout, nin->type, outdim, szOut)) {
    biffAddf(NRRD, "%s: failed to create slice", me);
    return 1;
  }
  
  /* the skinny */
  src = (char *)nin->data;
  dest = (char *)nout->data;
  src += rowLen*pos;
  for (I=0; I<colLen; I++) {
    /* HEY: replace with AIR_MEMCPY() or similar, when applicable */
    memcpy(dest, src, rowLen);
    src += colStep;
    dest += rowLen;
  }

  /* copy the peripheral information */
  if (nrrdAxisInfoCopy(nout, nin, map, NRRD_AXIS_INFO_NONE)) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  if (nrrdContentSet_va(nout, func, nin, "%d,%d", saxi, pos)) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  if (nrrdBasicInfoCopy(nout, nin,
                        NRRD_BASIC_INFO_DATA_BIT
                        | NRRD_BASIC_INFO_TYPE_BIT
                        | NRRD_BASIC_INFO_BLOCKSIZE_BIT
                        | NRRD_BASIC_INFO_DIMENSION_BIT
                        | NRRD_BASIC_INFO_SPACEORIGIN_BIT
                        | NRRD_BASIC_INFO_CONTENT_BIT
                        | NRRD_BASIC_INFO_COMMENTS_BIT
                        | (nrrdStateKeyValuePairsPropagate
                           ? 0
                           : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  /* translate origin if this was a spatial axis, otherwise copy */
  /* note that if there is no spatial info at all, this is all harmless */
  if (AIR_EXISTS(nin->axis[saxi].spaceDirection[0])) {
    nrrdSpaceVecScaleAdd2(nout->spaceOrigin,
                          1.0, nin->spaceOrigin,
                          AIR_CAST(double, pos),
                          nin->axis[saxi].spaceDirection);
  } else {
    nrrdSpaceVecCopy(nout->spaceOrigin, nin->spaceOrigin);
  }
  return 0;
}

/*
******** nrrdCrop()
**
** select some sub-volume inside a given nrrd, producing an output
** nrrd with the same dimensions, but with equal or smaller sizes
** along each axis.
*/
int
nrrdCrop(Nrrd *nout, const Nrrd *nin, size_t *min, size_t *max) {
  static const char me[]="nrrdCrop", func[] = "crop";
  char buff1[NRRD_DIM_MAX*30], buff2[AIR_STRLEN_SMALL];
  unsigned int ai;
  size_t I,
    lineSize,                /* #bytes in one scanline to be copied */
    typeSize,                /* size of data type */
    cIn[NRRD_DIM_MAX],       /* coords for line start, in input */
    cOut[NRRD_DIM_MAX],      /* coords for line start, in output */
    szIn[NRRD_DIM_MAX],
    szOut[NRRD_DIM_MAX],
    idxIn, idxOut,           /* linear indices for input and output */
    numLines;                /* number of scanlines in output nrrd */
  char *dataIn, *dataOut;

  /* errors */
  if (!(nout && nin && min && max)) {
    biffAddf(NRRD, "%s: got NULL pointer", me);
    return 1;
  }
  if (nout == nin) {
    biffAddf(NRRD, "%s: nout==nin disallowed", me);
    return 1;
  }
  for (ai=0; ai<nin->dim; ai++) {
    if (!(min[ai] <= max[ai])) {
      biffAddf(NRRD, "%s: axis %d min (" _AIR_SIZE_T_CNV 
               ") not <= max (" _AIR_SIZE_T_CNV ")", 
               me, ai, min[ai], max[ai]);
      return 1;
    }
    if (!( min[ai] < nin->axis[ai].size && max[ai] < nin->axis[ai].size )) {
      biffAddf(NRRD, "%s: axis %d min (" _AIR_SIZE_T_CNV  
               ") or max (" _AIR_SIZE_T_CNV  ") out of bounds [0," 
               _AIR_SIZE_T_CNV  "]",
               me, ai, min[ai], max[ai], nin->axis[ai].size-1);
      return 1;
    }
  }
  /* this shouldn't actually be necessary .. */
  if (!nrrdElementSize(nin)) {
    biffAddf(NRRD, "%s: nrrd reports zero element size!", me);
    return 1;
  }
  
  /* allocate */
  nrrdAxisInfoGet_nva(nin, nrrdAxisInfoSize, szIn);
  numLines = 1;
  for (ai=0; ai<nin->dim; ai++) {
    szOut[ai] = max[ai] - min[ai] + 1;
    if (ai) {
      numLines *= szOut[ai];
    }
  }
  nout->blockSize = nin->blockSize;
  if (nrrdMaybeAlloc_nva(nout, nin->type, nin->dim, szOut)) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  lineSize = szOut[0]*nrrdElementSize(nin);
  
  /* the skinny */
  typeSize = nrrdElementSize(nin);
  dataIn = (char *)nin->data;
  dataOut = (char *)nout->data;
  memset(cOut, 0, NRRD_DIM_MAX*sizeof(unsigned int));
  /*
  printf("!%s: nin->dim = %d\n", me, nin->dim);
  printf("!%s: min  = %d %d %d\n", me, min[0], min[1], min[2]);
  printf("!%s: szIn = %d %d %d\n", me, szIn[0], szIn[1], szIn[2]);
  printf("!%s: szOut = %d %d %d\n", me, szOut[0], szOut[1], szOut[2]);
  printf("!%s: lineSize = %d\n", me, lineSize);
  printf("!%s: typeSize = %d\n", me, typeSize);
  printf("!%s: numLines = %d\n", me, (int)numLines);
  */
  for (I=0; I<numLines; I++) {
    for (ai=0; ai<nin->dim; ai++) {
      cIn[ai] = cOut[ai] + min[ai];
    }
    NRRD_INDEX_GEN(idxOut, cOut, szOut, nin->dim);
    NRRD_INDEX_GEN(idxIn, cIn, szIn, nin->dim);
    /*
    printf("!%s: %5d: cOut=(%3d,%3d,%3d) --> idxOut = %5d\n",
           me, (int)I, cOut[0], cOut[1], cOut[2], (int)idxOut);
    printf("!%s: %5d:  cIn=(%3d,%3d,%3d) -->  idxIn = %5d\n",
           me, (int)I, cIn[0], cIn[1], cIn[2], (int)idxIn);
    */
    memcpy(dataOut + idxOut*typeSize, dataIn + idxIn*typeSize, lineSize);
    /* the lowest coordinate in cOut[] will stay zero, since we are 
       copying one (1-D) scanline at a time */
    NRRD_COORD_INCR(cOut, szOut, nin->dim, 1);
  }
  if (nrrdAxisInfoCopy(nout, nin, NULL, (NRRD_AXIS_INFO_SIZE_BIT |
                                         NRRD_AXIS_INFO_MIN_BIT |
                                         NRRD_AXIS_INFO_MAX_BIT ))) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  for (ai=0; ai<nin->dim; ai++) {
    nrrdAxisInfoPosRange(&(nout->axis[ai].min), &(nout->axis[ai].max),
                         nin, ai, AIR_CAST(double, min[ai]), 
                         AIR_CAST(double, max[ai]));
    /* do the safe thing first */
    nout->axis[ai].kind = _nrrdKindAltered(nin->axis[ai].kind, AIR_FALSE);
    /* try cleverness */
    if (!nrrdStateKindNoop) {
      if (nout->axis[ai].size == nin->axis[ai].size) {
        /* we can safely copy kind; the samples didn't change */
        nout->axis[ai].kind = nin->axis[ai].kind;
      } else if (nrrdKind4Color == nin->axis[ai].kind
                 && 3 == szOut[ai]) {
        nout->axis[ai].kind = nrrdKind3Color;
      } else if (nrrdKind4Vector == nin->axis[ai].kind
                 && 3 == szOut[ai]) {
        nout->axis[ai].kind = nrrdKind3Vector;
      } else if ((nrrdKind4Vector == nin->axis[ai].kind
                  || nrrdKind3Vector == nin->axis[ai].kind)
                 && 2 == szOut[ai]) {
        nout->axis[ai].kind = nrrdKind2Vector;
      } else if (nrrdKindRGBAColor == nin->axis[ai].kind
                 && 0 == min[ai]
                 && 2 == max[ai]) {
        nout->axis[ai].kind = nrrdKindRGBColor;
      } else if (nrrdKind2DMaskedSymMatrix == nin->axis[ai].kind
                 && 1 == min[ai]
                 && max[ai] == szIn[ai]-1) {
        nout->axis[ai].kind = nrrdKind2DSymMatrix;
      } else if (nrrdKind2DMaskedMatrix == nin->axis[ai].kind
                 && 1 == min[ai]
                 && max[ai] == szIn[ai]-1) {
        nout->axis[ai].kind = nrrdKind2DMatrix;
      } else if (nrrdKind3DMaskedSymMatrix == nin->axis[ai].kind
                 && 1 == min[ai]
                 && max[ai] == szIn[ai]-1) {
        nout->axis[ai].kind = nrrdKind3DSymMatrix;
      } else if (nrrdKind3DMaskedMatrix == nin->axis[ai].kind
                 && 1 == min[ai]
                 && max[ai] == szIn[ai]-1) {
        nout->axis[ai].kind = nrrdKind3DMatrix;
      }
    }
  }
  strcpy(buff1, "");
  for (ai=0; ai<nin->dim; ai++) {
    sprintf(buff2, "%s[" _AIR_SIZE_T_CNV  "," _AIR_SIZE_T_CNV  "]",
            (ai ? "x" : ""), min[ai], max[ai]);
    strcat(buff1, buff2);
  }
  if (nrrdContentSet_va(nout, func, nin, "%s", buff1)) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  if (nrrdBasicInfoCopy(nout, nin,
                        NRRD_BASIC_INFO_DATA_BIT
                        | NRRD_BASIC_INFO_TYPE_BIT
                        | NRRD_BASIC_INFO_BLOCKSIZE_BIT
                        | NRRD_BASIC_INFO_DIMENSION_BIT
                        | NRRD_BASIC_INFO_SPACEORIGIN_BIT
                        | NRRD_BASIC_INFO_CONTENT_BIT
                        | NRRD_BASIC_INFO_COMMENTS_BIT
                        | (nrrdStateKeyValuePairsPropagate
                           ? 0
                           : NRRD_BASIC_INFO_KEYVALUEPAIRS_BIT))) {
    biffAddf(NRRD, "%s:", me);
    return 1;
  }
  /* copy origin, then shift it along the spatial axes */
  nrrdSpaceVecCopy(nout->spaceOrigin, nin->spaceOrigin);
  for (ai=0; ai<nin->dim; ai++) {
    if (AIR_EXISTS(nin->axis[ai].spaceDirection[0])) {
      nrrdSpaceVecScaleAdd2(nout->spaceOrigin,
                            1.0, nout->spaceOrigin,
                            AIR_CAST(double, min[ai]), 
                            nin->axis[ai].spaceDirection);
    }
  }
                         

  return 0;
}