File: dgamit.c

package info (click to toggle)
insighttoolkit 3.20.1%2Bgit20120521-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 80,652 kB
  • sloc: cpp: 458,133; ansic: 196,223; fortran: 28,000; python: 3,839; tcl: 1,811; sh: 1,184; java: 583; makefile: 430; csh: 220; perl: 193; xml: 20
file content (219 lines) | stat: -rw-r--r-- 6,649 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
/* dgamit.f -- translated by f2c (version 20041007).
   You must link the resulting object file with libf2c:
        on Microsoft Windows system, link with libf2c.lib;
        on Linux or Unix systems, link with .../path/to/libf2c.a -lm
        or, if you install libf2c.a in a standard place, with -lf2c -lm
        -- in that order, at the end of the command line, as in
                cc *.o -lf2c -lm
        Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

                http://www.netlib.org/f2c/libf2c.zip
*/

/** This routine has been editted to be thread safe **/

#define V3P_NETLIB_SRC
#include "v3p_netlib.h"

/* Table of constant values */

static integer c__3 = 3;
static integer c__4 = 4;
static integer c__1 = 1;
static integer c__2 = 2;
static doublereal c_b10 = 1.;

/* DECK DGAMIT */
doublereal dgamit_(doublereal *a, doublereal *x)
{
    /* Initialized data */

    // static logical first = TRUE_;

    /* System generated locals */
    doublereal ret_val, d__1, d__2;

    /* Builtin functions */
    double log(doublereal), sqrt(doublereal), d_sign(doublereal *, doublereal 
            *), d_int(doublereal *), exp(doublereal);

    /* Local variables */
    doublereal h__, t, sga, alx;
    /* static */ doublereal bot;
    doublereal alng, aeps;
    extern doublereal dgamr_(doublereal *);
    doublereal ainta;
    /* static */ doublereal sqeps;
    extern doublereal d1mach_(integer *);
    doublereal algap1;
    extern doublereal d9lgic_(doublereal *, doublereal *, doublereal *), 
            d9lgit_(doublereal *, doublereal *, doublereal *), d9gmit_(
            doublereal *, doublereal *, doublereal *, doublereal *, 
            doublereal *), dlngam_(doublereal *);
    extern /* Subroutine */ int dlgams_(doublereal *, doublereal *, 
            doublereal *);
    doublereal sgngam;
    /* static */ doublereal alneps;
//    extern /* Subroutine */ int xerclr_(void);
    extern /* Subroutine */ int xermsg_(char *, char *, char *,
             integer *, integer *, ftnlen, ftnlen, ftnlen);

/* ***BEGIN PROLOGUE  DGAMIT */
/* ***PURPOSE  Calculate Tricomi's form of the incomplete Gamma function. */
/* ***LIBRARY   SLATEC (FNLIB) */
/* ***CATEGORY  C7E */
/* ***TYPE      DOUBLE PRECISION (GAMIT-S, DGAMIT-D) */
/* ***KEYWORDS  COMPLEMENTARY INCOMPLETE GAMMA FUNCTION, FNLIB, */
/*             SPECIAL FUNCTIONS, TRICOMI */
/* ***AUTHOR  Fullerton, W., (LANL) */
/* ***DESCRIPTION */

/*   Evaluate Tricomi's incomplete Gamma function defined by */

/*   DGAMIT = X**(-A)/GAMMA(A) * integral from 0 to X of EXP(-T) * */
/*              T**(A-1.) */

/*   for A .GT. 0.0 and by analytic continuation for A .LE. 0.0. */
/*   GAMMA(X) is the complete gamma function of X. */

/*   DGAMIT is evaluated for arbitrary real values of A and for non- */
/*   negative values of X (even though DGAMIT is defined for X .LT. */
/*   0.0), except that for X = 0 and A .LE. 0.0, DGAMIT is infinite, */
/*   which is a fatal error. */

/*   The function and both arguments are DOUBLE PRECISION. */

/*   A slight deterioration of 2 or 3 digits accuracy will occur when */
/*   DGAMIT is very large or very small in absolute value, because log- */
/*   arithmic variables are used.  Also, if the parameter  A  is very */
/*   close to a negative integer (but not a negative integer), there is */
/*   a loss of accuracy, which is reported if the result is less than */
/*   half machine precision. */

/* ***REFERENCES  W. Gautschi, A computational procedure for incomplete */
/*                 gamma functions, ACM Transactions on Mathematical */
/*                 Software 5, 4 (December 1979), pp. 466-481. */
/*               W. Gautschi, Incomplete gamma functions, Algorithm 542, */
/*                 ACM Transactions on Mathematical Software 5, 4 */
/*                 (December 1979), pp. 482-489. */
/* ***ROUTINES CALLED  D1MACH, D9GMIT, D9LGIC, D9LGIT, DGAMR, DLGAMS, */
/*                    DLNGAM, XERCLR, XERMSG */
/* ***REVISION HISTORY  (YYMMDD) */
/*   770701  DATE WRITTEN */
/*   890531  Changed all specific intrinsics to generic.  (WRB) */
/*   890531  REVISION DATE from Version 3.2 */
/*   891214  Prologue converted to Version 4.0 format.  (BAB) */
/*   900315  CALLs to XERROR changed to CALLs to XERMSG.  (THJ) */
/*   920528  DESCRIPTION and REFERENCES sections revised.  (WRB) */
/* ***END PROLOGUE  DGAMIT */
/* ***FIRST EXECUTABLE STATEMENT  DGAMIT */

    // d1mach has been made thread safe, so there is no need for the
    // statics in determining these values
//     if (first) {
//      alneps = -log(d1mach_(&c__3));
//      sqeps = sqrt(d1mach_(&c__4));
//      bot = log(d1mach_(&c__1));
//     }
//     first = FALSE_;
    alneps = -log(d1mach_(&c__3));
    sqeps = sqrt(d1mach_(&c__4));
    bot = log(d1mach_(&c__1));

    if (*x < 0.) {
        xermsg_("SLATEC", "DGAMIT", "X IS NEGATIVE", &c__2, &c__2, (ftnlen)6, 
                (ftnlen)6, (ftnlen)13);
    }

    if (*x != 0.) {
        alx = log(*x);
    }
    sga = 1.;
    if (*a != 0.) {
        sga = d_sign(&c_b10, a);
    }
    d__1 = *a + sga * .5;
    ainta = d_int(&d__1);
    aeps = *a - ainta;

    if (*x > 0.) {
        goto L20;
    }
    ret_val = 0.;
    if (ainta > 0. || aeps != 0.) {
        d__1 = *a + 1.;
        ret_val = dgamr_(&d__1);
    }
    return ret_val;

L20:
    if (*x > 1.) {
        goto L30;
    }
    if (*a >= -.5 || aeps != 0.) {
        d__1 = *a + 1.;
        dlgams_(&d__1, &algap1, &sgngam);
    }
    ret_val = d9gmit_(a, x, &algap1, &sgngam, &alx);
    return ret_val;

L30:
    if (*a < *x) {
        goto L40;
    }
    d__2 = *a + 1.;
    d__1 = dlngam_(&d__2);
    t = d9lgit_(a, x, &d__1);
    if (t < bot) {
//      xerclr_();
    }
    ret_val = exp(t);
    return ret_val;

L40:
    alng = d9lgic_(a, x, &alx);

/* EVALUATE DGAMIT IN TERMS OF LOG (DGAMIC (A, X)) */

    h__ = 1.;
    if (aeps == 0. && ainta <= 0.) {
        goto L50;
    }

    d__1 = *a + 1.;
    dlgams_(&d__1, &algap1, &sgngam);
    t = log((abs(*a))) + alng - algap1;
    if (t > alneps) {
        goto L60;
    }

    if (t > -alneps) {
        h__ = 1. - sga * sgngam * exp(t);
    }
    if (abs(h__) > sqeps) {
        goto L50;
    }

//    xerclr_();
    xermsg_("SLATEC", "DGAMIT", "RESULT LT HALF PRECISION", &c__1, &c__1, (
            ftnlen)6, (ftnlen)6, (ftnlen)24);

L50:
    t = -(*a) * alx + log((abs(h__)));
    if (t < bot) {
//      xerclr_();
    }
    d__1 = exp(t);
    ret_val = d_sign(&d__1, &h__);
    return ret_val;

L60:
    t -= *a * alx;
    if (t < bot) {
//      xerclr_();
    }
    ret_val = -sga * sgngam * exp(t);
    return ret_val;

} /* dgamit_ */