1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
/* dgamma.f -- translated by f2c (version 20041007).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
/** This routine has been editted to be thread safe **/
#define V3P_NETLIB_SRC
#include "v3p_netlib.h"
/* Table of constant values */
static integer c__3 = 3;
static integer c__42 = 42;
static integer c__4 = 4;
static integer c__2 = 2;
static integer c__1 = 1;
/* DECK DGAMMA */
doublereal dgamma_(doublereal *x)
{
/* Initialized data */
static doublereal gamcs[42] = { .008571195590989331421920062399942,
.004415381324841006757191315771652,
.05685043681599363378632664588789,
-.004219835396418560501012500186624,
.001326808181212460220584006796352,
-1.893024529798880432523947023886e-4,
3.606925327441245256578082217225e-5,
-6.056761904460864218485548290365e-6,
1.055829546302283344731823509093e-6,
-1.811967365542384048291855891166e-7,
3.117724964715322277790254593169e-8,
-5.354219639019687140874081024347e-9,
9.19327551985958894688778682594e-10,
-1.577941280288339761767423273953e-10,
2.707980622934954543266540433089e-11,
-4.646818653825730144081661058933e-12,
7.973350192007419656460767175359e-13,
-1.368078209830916025799499172309e-13,
2.347319486563800657233471771688e-14,
-4.027432614949066932766570534699e-15,
6.910051747372100912138336975257e-16,
-1.185584500221992907052387126192e-16,
2.034148542496373955201026051932e-17,
-3.490054341717405849274012949108e-18,
5.987993856485305567135051066026e-19,
-1.027378057872228074490069778431e-19,
1.762702816060529824942759660748e-20,
-3.024320653735306260958772112042e-21,
5.188914660218397839717833550506e-22,
-8.902770842456576692449251601066e-23,
1.527474068493342602274596891306e-23,
-2.620731256187362900257328332799e-24,
4.496464047830538670331046570666e-25,
-7.714712731336877911703901525333e-26,
1.323635453126044036486572714666e-26,
-2.270999412942928816702313813333e-27,
3.896418998003991449320816639999e-28,
-6.685198115125953327792127999999e-29,
1.146998663140024384347613866666e-29,
-1.967938586345134677295103999999e-30,
3.376448816585338090334890666666e-31,
-5.793070335782135784625493333333e-32 };
static doublereal pi = 3.1415926535897932384626433832795;
static doublereal sq2pil = .91893853320467274178032973640562;
// static logical first = TRUE_;
/* System generated locals */
integer i__1;
real r__1;
doublereal ret_val, d__1, d__2;
/* Builtin functions */
double sqrt(doublereal), d_int(doublereal *), log(doublereal), exp(
doublereal), sin(doublereal);
/* Local variables */
integer i__, n;
doublereal y;
/* static */ integer ngam;
/* static */ doublereal xmin, xmax, dxrel;
extern doublereal d1mach_(integer *), d9lgmc_(doublereal *);
extern /* Subroutine */ int dgamlm_(doublereal *, doublereal *);
extern doublereal dcsevl_(doublereal *, doublereal *, integer *);
extern integer initds_(doublereal *, integer *, real *);
extern /* Subroutine */ int xermsg_(char *, char *, char *, integer *,
integer *, ftnlen, ftnlen, ftnlen);
doublereal sinpiy;
/* ***BEGIN PROLOGUE DGAMMA */
/* ***PURPOSE Compute the complete Gamma function. */
/* ***LIBRARY SLATEC (FNLIB) */
/* ***CATEGORY C7A */
/* ***TYPE DOUBLE PRECISION (GAMMA-S, DGAMMA-D, CGAMMA-C) */
/* ***KEYWORDS COMPLETE GAMMA FUNCTION, FNLIB, SPECIAL FUNCTIONS */
/* ***AUTHOR Fullerton, W., (LANL) */
/* ***DESCRIPTION */
/* DGAMMA(X) calculates the double precision complete Gamma function */
/* for double precision argument X. */
/* Series for GAM on the interval 0. to 1.00000E+00 */
/* with weighted error 5.79E-32 */
/* log weighted error 31.24 */
/* significant figures required 30.00 */
/* decimal places required 32.05 */
/* ***REFERENCES (NONE) */
/* ***ROUTINES CALLED D1MACH, D9LGMC, DCSEVL, DGAMLM, INITDS, XERMSG */
/* ***REVISION HISTORY (YYMMDD) */
/* 770601 DATE WRITTEN */
/* 890531 Changed all specific intrinsics to generic. (WRB) */
/* 890911 Removed unnecessary intrinsics. (WRB) */
/* 890911 REVISION DATE from Version 3.2 */
/* 891214 Prologue converted to Version 4.0 format. (BAB) */
/* 900315 CALLs to XERROR changed to CALLs to XERMSG. (THJ) */
/* 920618 Removed space from variable name. (RWC, WRB) */
/* ***END PROLOGUE DGAMMA */
/* ***FIRST EXECUTABLE STATEMENT DGAMMA */
// d1mach has been made thread safe, so there is no need for the
// statics in determining these values
// if (first) {
// r__1 = (real) d1mach_(&c__3) * .1f;
// ngam = initds_(gamcs, &c__42, &r__1);
// dgamlm_(&xmin, &xmax);
// dxrel = sqrt(d1mach_(&c__4));
// }
// first = FALSE_;
r__1 = (real) d1mach_(&c__3) * .1f;
ngam = initds_(gamcs, &c__42, &r__1);
dgamlm_(&xmin, &xmax);
dxrel = sqrt(d1mach_(&c__4));
y = abs(*x);
if (y > 10.) {
goto L50;
}
/* COMPUTE GAMMA(X) FOR -XBND .LE. X .LE. XBND. REDUCE INTERVAL AND FIND */
/* GAMMA(1+Y) FOR 0.0 .LE. Y .LT. 1.0 FIRST OF ALL. */
n = (integer) (*x);
if (*x < 0.) {
--n;
}
y = *x - n;
--n;
d__1 = y * 2. - 1.;
ret_val = dcsevl_(&d__1, gamcs, &ngam) + .9375;
if (n == 0) {
return ret_val;
}
if (n > 0) {
goto L30;
}
/* COMPUTE GAMMA(X) FOR X .LT. 1.0 */
n = -n;
if (*x == 0.) {
xermsg_("SLATEC", "DGAMMA", "X IS 0", &c__4, &c__2, (ftnlen)6, (
ftnlen)6, (ftnlen)6);
}
if (*x < 0.f && *x + n - 2 == 0.) {
xermsg_("SLATEC", "DGAMMA", "X IS A NEGATIVE INTEGER", &c__4, &c__2, (
ftnlen)6, (ftnlen)6, (ftnlen)23);
}
d__2 = *x - .5;
if (*x < -.5 && (d__1 = (*x - d_int(&d__2)) / *x, abs(d__1)) < dxrel) {
xermsg_("SLATEC", "DGAMMA", "ANSWER LT HALF PRECISION BECAUSE X TOO "
"NEAR NEGATIVE INTEGER", &c__1, &c__1, (ftnlen)6, (ftnlen)6, (
ftnlen)60);
}
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
ret_val /= *x + i__ - 1;
/* L20: */
}
return ret_val;
/* GAMMA(X) FOR X .GE. 2.0 AND X .LE. 10.0 */
L30:
i__1 = n;
for (i__ = 1; i__ <= i__1; ++i__) {
ret_val = (y + i__) * ret_val;
/* L40: */
}
return ret_val;
/* GAMMA(X) FOR ABS(X) .GT. 10.0. RECALL Y = ABS(X). */
L50:
if (*x > xmax) {
xermsg_("SLATEC", "DGAMMA", "X SO BIG GAMMA OVERFLOWS", &c__3, &c__2,
(ftnlen)6, (ftnlen)6, (ftnlen)24);
}
ret_val = 0.;
if (*x < xmin) {
xermsg_("SLATEC", "DGAMMA", "X SO SMALL GAMMA UNDERFLOWS", &c__2, &
c__1, (ftnlen)6, (ftnlen)6, (ftnlen)27);
}
if (*x < xmin) {
return ret_val;
}
ret_val = exp((y - .5) * log(y) - y + sq2pil + d9lgmc_(&y));
if (*x > 0.) {
return ret_val;
}
d__2 = *x - .5;
if ((d__1 = (*x - d_int(&d__2)) / *x, abs(d__1)) < dxrel) {
xermsg_("SLATEC", "DGAMMA", "ANSWER LT HALF PRECISION, X TOO NEAR NE"
"GATIVE INTEGER", &c__1, &c__1, (ftnlen)6, (ftnlen)6, (ftnlen)
53);
}
sinpiy = sin(pi * y);
if (sinpiy == 0.) {
xermsg_("SLATEC", "DGAMMA", "X IS A NEGATIVE INTEGER", &c__4, &c__2, (
ftnlen)6, (ftnlen)6, (ftnlen)23);
}
ret_val = -pi / (y * sinpiy * ret_val);
return ret_val;
} /* dgamma_ */
|